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ABSTRACT

The differential quadrature method (DQM) is applied to computation of the eigenvalues of the
equations governing in plane and out-of-plane buckling. In-plane buckling and twist-buckling
under uniformly distributed radial loads are investigated by this method. Critical loads are
calculated for various end conditions and opening angles. Results are compared with existing
exact solutions where available. The differential quadrature method gives good accuracy even
when only a limited number of grid points is used. New results are given for two sets of
boundary conditions not previously considered for this problem: clamped-clamped and clamped
simply supported ends.
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1. Introduction of technology and engineering, the stability
behavior of elastic arches been the subject of
Owing to their importance in many fields a large number of investigations. Solutions of
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the relevant differential equations have tradi-
tionally been obtained by the standard finite
difference or finite element methods. These
techniques require a great deal of computer
time as the number of discrete nodes becomes
relatively large under conditions of complex
geometry and loading. In a large number of
cases, the moderately accurate solution which
can be calculated rapidly is desired at only a
few points in the physical domain. However,
in order to get results with even only limited
accuracy at or near a point of interest for a
reasonably complicated problem,
often have dependence of the accuracy and
stability of the mentioned methods on the
nature and refinement of the discretization of
the domain.

Ojalvo et al." studied the elastic stability of
ring segments with a thrust or a pull directed
along the chord. Vlasov” derived closed—form
solutions such as for an arch, in which cross-
sections are allowed to warp non-uniformly
along the beam axis, subject to in-—plane
bending and uniformly distributed radial loads.
CheneyS) studied the buckling of thin-walled
open-section rings including both the effect of
axial stress and the effect of warping. Yoo
and Pfeiffer” derived the flexural-torsional
buckling equations which were based on a
different derivation of the total potential. Pa-
pangelis and Trahair” conducted a theoretical
study of the flcxural-torsional buckling of
doubly symmetric arches to confirm the pre-
dictions of Timoshenko and Gere® for arches
in uniform compression and of vlasov® for
arches in uniform bending. Trahair and
Papangelisﬂ also developed a flexural-torsional
buckling theory for arches of monosymmetric
cross-section using the second variation of
the total potential. Yang and Kuo® studied the
static stability of curved thin-walled beams
using the principle of virtual displacements in

solutions
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a Lagrangian formulation with emphasis place
on the effect of curvature, and they presented
closed-form solutions for arches in uniform
bending and uniform compression. In addition,
different approaches were also presented by
Kuo and Yangg) to support their studies
treating a curved beam as the composition of
an infinite number of infinitesimal straight
beams. Recently, Kang and Yoo presented a
theoretical study on the buckling of thin-
walled curved beams with the derivation of
stability equations. Very recently Pi et al'’
investigated the effect of prebuckling defor-
mations on flexural-torsional buckling of arc-
hes, and Kang and Bert'? studied flexural-
torsional buckling with warping using the
differential quadrature method (DQM).

In the present work, the DQM which is a
rather efficient alternate procedure for the
solution of partial differential equations, intro-
duced by Bellman and Castim, is use to an-
alyze in-plane buckling and twist-buckling
under uniform pressure. The critical loads are
calculated for the member. The circular arches
considered are of uniforrmn cross section, and
have both ends either simply supported or
clamped, or have simply supported-clamped
ends, Numerical results are compared with
existing exact solutions where available.

Fig. 1 Uniformly distributed radial loading
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Fig. 2 Coordinate system of arch
2. Governing Differential Equations

The uniform circular arch considered is
shown in Figs.1 and 2 under a uniform in
ward radial pressure g per unit of cir-
cumferential length. A point on the centroidal
axis is defined by the angle 6, measured
from the left support, and the radius of the
centroidal axis is K. The tangential and radial
displacements of the arch axis are v and w,
respectively, v and B are the displacement at
right angles to the plane of the arch and the
angular rotation of a cross section, respec-
tively. These displacements are considered to
be positive in the directions indicated.

2.1 In-plane buckling of uniformly compressed
thin circular arches

A mathematical study of the in plane inex-
tensional condition of small cross section is
carried out starting with the basie equations

222

as given by Love'™. Following Love, the

analysis is simplified by restrieting attention
to problems where there is no extension of
the center line. This condition requires that w
and v be related by

W= % .......................................... (1)

If the external forces are assumed to rotate
with the centroidal axis of the arch during
the process of buckling, and shear deformation
is neglected, the differential equation can be
written as

——%(w\' + w'”)+%(vw +7)

where E is the Young's modulus of clasticity
for the material of the arch, and I is the area
moment of inertia of the cross section.

Using equation (1) and the dimensionless
distance coordinate X= 6/8, in which 8 is
the opening angle of the member, one can
rewrite equations (2) as
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where each prime denotes one differentiation

with respect to the dimensionless distance
coordinate,

The boundary conditions for both ends
clamped, both ends simply supported and for
mixed clamped-simply supported ends are,
respectively

v=v'=v"=0 at X=0and 1 -, 4)
v=v'=0"=0 at X=0and 1 cerrrrrermm. (5)
v=v'=v"=0 at X=0,

U=0"=0""=0 At X=1 ccorerrrrrrrrrirrerarrrrns (6)

2.2 Twist-buckling of uniformly compressed
thin circular arches
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Consider a circular arch shown in Fig. 1.
The compressive force F in the arch is gR.
This compressive force may cause buckling of
the arch either in its plane or out of its plane.
The corresponding buckling equations can be
diduced from the coupled twist-bending vibra-
tion equations suggested by Timoshenko in
investigating the torsional buckling of open
section columns. His procedure is merely to
replace the external load term by a fictitious
load whose intensity is the load causing
buckling times the appropriate ‘curvature’
term. On this basis, the buckling eguations
can be deduced from the equations of vibra-
tions by formally replacing the inertia term.
The differential equation can be written as
(W ahlS))
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where G is the shear modulus, and J is the
torsion constant of the cross section.

The boundary conditions for both ends
clamped, both ends simply supported and for
mixed clamped-simply supported ends are,

respectively

B=u=u"=0 at X=0and 1

B=u=u'"=0 at X=0and 1

B=u=u'=0 at X=0,

B=u=u"=0  at X=1 rrrirrrirnns an

3. Differential Quadrature Method

The Differential Quadrature Method was
introduced by Bellman and Casti™”. By formu-
lating the quadrature rule for a derivative as
an analogous extension of quadrature for in-
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tegrals in their introductory paper, they
proposed the differential quadrature method as
a new technique for the numerical solution of
initial value problems of ordinary and partial
differential equations. It was applied for the
first time to static analysis of structural com-
ponents by Jang et al’® The versatility of
the DQM to engineering analysis in general
and to structural analysis in particular is be-
coming increasingly evident by the related
publications of recent years. Kukreti et al!”
calculated the fundamental frequencies of
tapered plates, and Farsa et al® applied the
method to analysis and detailed parametric
evaluation of the fundamental frequencles of
general anisotropic and laminated plates. In
another development, the quadrature method
was introduced in lubrication mechanics by
Malik and Bert'”. Kang and Bert'”” applied the
method to the flexural-torsional buckling an-
alysis of circular arches. From a mathematical
point of view, the application of the differ-
ential quadrature method to a partial differen—
tial equation can be expressed as follows :

LU= 2 Wiflx) for i, i=12-N

where L denotes a differential operator, x; are
the discrete points considered in the domain,
fixj) are the function values at these points,
W are the weighting coefficients attached to
these function values, and N denotes the
number of discrete points in the domain. This
equation, thus, expresses as the derivatives of
a function at a diserete point in terms of the
function values at all discrete points in the
variable domain.

The general form of the function flx) is
taken as

fn)=x*' for k=123-N

If the differential operator L represents an
n* derivative, then

223



#xaWIE

3 Wy 1t = Gk D=2 Gh e} ™

=1
for i, k:LZ," N (14)
This expression represents N sets of N
linear algebraic equations, giving a unique
solution for the weighting coefficients, Wij,
since the coefficient matrix is a Vandermonde
matrix which always has an inverse, as
described by Hamming®. Thus, the method
can be used to express the derivatives of a
function at a discrete point in terms of the
function values at all discrete points in the
variable domain.

4. Application

The DQM is applied to the determination of
the in-plane buckling and the out-of-plane
buckling of circular arches. The differential
quadrature approximations of the governing
equations and boundary conditions are shown.

4.1 In-plane buckling of uniformly compressed
thin circular arches

Applying the differential guadrature method
to eguations (3), gives

o8 glFu v+ 6 ngu vj
L e _qR_3)
62 ng” vi ( EI

(7140 211)13 v,-+—91-2— ngi/’ U;‘)

where By, D; and F; are the weighting
coefficients for the second-, fourth- and
sixth-order derivatives, respectively, along the
dimensionless axis.

The boundary conditions for clamped ends,
given by equations (4), can be expressed in
differential quadrature form as follows :

=0 at X=0
UNZO at X=1
224

glAzj v;=0 at X=0+6

ﬁlA(N_l)’ v,~=0 at X=1-295

nggj ’Uj=0 at X=0+2¢

ng(N—Z), Uj=0 at X=1-26

Similarly, the boundary conditions for simply
supported ends given by equations (5) can be
expressed in differential quadrature form as
follows :
v1=0 at X=0
vy=0 at X=1
ﬁlAZj ’U]‘:O at X=0+ 348
=
2114(1\/_1)1 U,':O at X:l_ 1)
ﬁlc;gj 2/,'=0 at X=0+2¢
=

gIC(N_g), Z)j:O at X=1-2¢

where A; and C; are the weighting coef-
ficients for the first~- and third-order deri-
vatives. here, & denotes a very small di-
stance measured along the dimensionless axis
from the boundary ends. In their work on the
application of DQM to the static analysis of
beams and plates, Jang et al'® proposed the
so—called & ~technique wherein adjacent to the
boundary points of the differential quadrature
grid points chosen at a small distance. This
8 gpproach is used to apply more than one
boundary conditions at a given station.

The boundary conditions for one clamped
and one simply supported end, given by equ-
ations (6), can be expressed in differential
quadrature form as

v =0 at X=0

UN:0 at X=1

Joumal of KIS Vol. 12, No. 3, December "97



glAZj U,'=0 at X=0+9¢
ﬁlA(N~l), v;=0 at X=1-2¢
=
ﬁlBaj U]':O at X=0+2¢
=

glc(N_Z)’ Z/,':O at X=1-26

Mixed boundaries can be casily accom-
modated by combining these equations: sim-
ply change the weighting coefficients. While
most analytical methods use the rather labo-
rious technique of superposition to arrive at
solutions for mixed boundary problems, this
approach of breaking the problem into several
easy is not required in the DQM. This set of
equations together with the appropriate boun-
dary conditions can be solved for the in-plane
buckling.

4.2 Twist-buckling of uniformly compressed
thin circular arches

Applying the differential quadrature method
to equations (7) and (8), gives

Erf 1 R . B,
R4( a 200 e 25, B,)

“F%Lz( é B uit R gBii B;‘)

—__4aq
R0 213” “
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The boundary conditions for clamped ends,
given by eguations (9), can be expressed in
differential quadrature form as follows :

ﬁ 1= O at X= O

BN=0 at X=1

rot
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u1=0 at X
uny=20 at X
ﬁlAZj u,=0 at X=0+9¢
7=

X

$1A<N_1)’ uj=0 at

The boundary conditions for simply sup-
ported ends given by equations (10) can be
expressed in differential quadrature form as
follows :

Bl=0 at X=0
B n=0 at X=1
u;=0 at X=0
uN=O at X=1
iﬁlej u;=0 at X=0+ 3¢

élB(N_l)l u1=0 at X=1—8
7=

Similarly, the boundary conditions for one
clamped and one simply supported end, given
by equations (11), can be expressed in dif-
ferential quadrature form as

B8.=0 at X=0
B =0 at X=1
=0 at X=0
uN:O at X=1
glAQ,' u,-=0 at X=0+ ¢
/ﬁlB(Nil)’ Zl,':O at X=1-—96

This set of equations together with the
appropriate boundary conditions can be solved
for the out-of-plane buckling.

5. Numerical Results and
Comparisons

In-plane and out—of-plane buckling
parameters g (-gRY/EI) are calculated by the
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differential quadrature method and are pre~
sented together with existing exact solutions
by Dinik; see Timoskenko and Gere®. The
critical values q* are evafuated for the case of
various end conditions and opening angles.
Table 1 presents the results of convergence
studies relative to the number of grid points
N with 8,=180". The data show that the
accuracy of the numerical solution increases
with increasing N. Then numerical insta~
bilities arise if N becomes too large (possibly
greater than approx. 15). Table 2 shows the
sensitivity of the solution to the choice of &
for the case of both ends simply supported.
The optimal value for & is found to be 1X

parison since no data are avallable.

Table 3 Critical value of in-plane buckling parameter,
g =g-AYEl, with both ends clamped; N=11

and & =1x10°

G, q'=q.R’/EI

degrees Timoshenko and Gere” DQM
30° 294 2946
60° 733 73.38
90° 324 32.44
120° 181 18.17
150° 115 1158
180° 8 7970

Table 4 Critical value of in-plane buckiing parameter,
q =aquAEl, with both ends simply supported ;
N=11 and & =1%107

-6 . . . S _
107, W.thh is obtame.d from trial-and-error Bo o~/ El
calculations. The solution accuracy decrcases degrees Timoshenko and Gere” DM
due to numerical instabilities if & becomes 30° 143 1426
too big (possibly greater than approx. 1X 60° 35 2199
-2
10). 9%0° 15 150
Table 1 Critical value of in-plane buckling parameter, 120° 8 8011
q =q.FF/El, with both ends simply supported 150° 476 478
for a range of grid points N; & =1x10° 180° 30 2.99
Timoshenko and Gere” . . .
90, degrees Number of grid points Table 5 Critical value of in-plane buckliing parameter,
185 9 I 3 5 g (=j:(,/:/f://5/;1 wm; ;Ian;[f?;;mply supported
ends; N= =
3.0 2.989 | 2.999 | 2.986 | 2.887 an -
e, @’ =a-R'/EI
Table 2 Critical value of in-plane buckling parameter, degrees DQM
g =q.RJEI, with both ends simply supported 30° 205.0
for a range of &; N=11 60° 50.72
Timoshenko and Gere” s 90° 22.15
80, degrees 120° 12.14
180° 1x107%1x10™|1%107|1x10™ 150° 7537
30 3015 | 2986 | 298 | 2999 180° 5.065

In Tables 3 and 4, the critical pressures of
in-plane buckling determined by the DQM are
compared with the exact solution for the case
of clamped and simply supported ends. Table
5 shows the numerical results by the dif-
ferential quadrature method for the case of
clamped-simply supported ends without com-
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In Tables 6 and 7, the critical pressures of
twist-buckling by the DQM are compared
with the exact solution for the case of simply
supported ends with the stiffness parameters
k(=GJ/EI). Tables 8 and 9 show the results
by the differential quadrature method for the
case of clamped and clamped-simply supported
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Table 6 Critical value of out-of-plane buckling para-
meter, g =g.AJE/, with both ends simply
supported; N=11 and & =1X10° and k=05

fo, q =qR'/ EI

degrees Timoshenko and Gerc” DOM
30° 3224 32.23
60° 5818 5.817
9Q° 1.50 1.50
120° 0.3667 0.3673
150° 0.05612
180° 0.0

Table 7 Critical value of out-of-plane buckling para-
meter, G =g, JEl, with both ends simply
supported ; N=11 and & =1x10° and k=10

8, g’ =q-R'/El

degrees Timoshenko and Gere” DQM
30° 3311 3311
60° 6.40 6.40
0° 1.80 1.80
120° 0.4808 0.4806
150° 0.0792
180° 0.0

ends without comparison since no data are
also available. Table 10 presents the results
with various stiffness parameters k for the
case of both ends simply supported From
Tables 3~9, it is seen that the critical loads
of the member with clamped ends are much
higher than those of the member with simply
supported ends and those of the member with
mixed clamped-simply supported ends. The
critical pressure can be increased by
decreasing the opening angle ¢ From Table
10, the critical value of out-of-plane buckling
increases as the stiffness parameter increases.
As can be seen, the numerical results by the
differential quadrature method show good to
excellent agreement with the exact solutions.

6. Conclusions

The differential quadrature method was ap-

St odetax] 12 M4 97 129

DQME 0| 8¢t otx|2] ztaaiA

Table 8 Critical value of out-of-plane buckling para-
meter, g =q,A/El, with both ends clamped
and clamped-simply supported: N=11, =1
%107 and k=05

B, g =a-R'/ EI (DQM)
degrees | clarped-clamped | clamped-simply supported
30° 140.2 69.84
60° 32.61 15.08
90° 13.14 5428
120° 6.621 2.378
150° 3.780 1.160
180° 2338 0.610

Table 9 Critical value of out-of-plane buckling para-
meter, g =g/ /El, with both ends clamped
and clamped-simply supported; N=11, § =1
X107 and k=10

Ao, ad =R’/ EI (DQM)
degrees | clarnped-clamped | clamped-simply supported

30° 1411 70.74
60° 33.30 1575
90° 13.60 5.841
120° 6.932 2.620
150° 4.006 1.306
180° 2525 0.7099

Table 10 Critical value of out-of-plane buckling para-
meter, ¢ =qg.AJE/, with both ends simply
supported ; N=11, 8§ =1x10° and 6,=90°

k, q' =q-R'/El
(GI/ED Timoshenko and Gere” DOM
0.005 0.0442
02 0.9999
05 15 1.50
1.0 1.8 1.80
15 1.929
1625 1.950 1.950

plied to the computation of the eigenvalues of
the equations governing in—plane buckling and
twist-buckling under uniform pressure. The
present approach gives excellent resuits for
the cases treated while requiring only a
limited number of grid points; only eleven
discrete points were used for the evaluation.
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New results are given for two sets of boun-
dary conditions not considered by previous
investigators for out-cf-plane buckling : clam-
ped-clamped and clamped-simply supported
ends.

The study reported herein is sponsored by
Hoseo University research funds, the latter
half of 1997.
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