• Title/Summary/Keyword: Differential GPS (DGPS)

Search Result 113, Processing Time 0.021 seconds

A Study on the Applicability of the Kinematic and the Static GPS Methods for Coastal Ocean Structure Survey

  • Lee, Byung-Gul;Yang, Sung-Kee;Kang, In-Jun
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.103-110
    • /
    • 2002
  • The position fixing usually is determined by triangulation, traverse surveying and astronomy surveying. However, when the station is moving, it is impossible to determine its position continuously by the former method. By a satellite positioning method(GPS), this problem can be solved. In our study, we used two methods to determine the length and coordinate of a point position. One is a kinematic GPS method and the other is a static one. Each is based on carrier phase measurement and employs a relative position technique. We implemented observation experiments such as Geodimeter and DGPS(Differential GPS) successfully. To estimate the accuracy between the kinematic and static methods, we compared the results of Geodimeter, the kinematic, and the static. The results showed that the static is relatively a little more accurate than the kinematic. However, in the kinematic mode, when we received the GPS data for a long time, we found that the kinematic also had a high accuracy value for the length survey Finally, we applied the GPS to Jeju Harbor Breakwater to examine the applicability of GPS for coastal ocean structure based on the kinematics and the statics, respectively.

Performance Analysis of Acquisition Methods for DGPS Reference Receiver under Noisy Environment

  • Park, Sang-Hyun;Cho, Deuk-Jae;Suh, Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.107-112
    • /
    • 2006
  • The previous acquisition method of GPS receiver for reference station adopts not only the coherent integration method but also the non-coherent integration method in order to enhance sensitivity under noisy environment. However, under noisy environment, the previous GPS signal acquisition method causes the non-coherent integration loss which is a major factor among losses that can be caused during GPS signal acquisition. The non-coherent integration loss also increases with the strength of the received noise. This paper has intention of analyzing the performance of the GPS signal acquisition method proposed to effectively enhance sensitivity of DGPS reference receiver under noisy environment. This paper presents that the proposed GPS signal acquisition method suppresses the non-coherent integration loss through post-processing simulation. Furthermore, with regard to the mean acquisition time, it is shown that the number of search cells of the proposed GPS signal acquisition method is much fewer than that of the previous GPS signal acquisition method.

  • PDF

A Feasibility Test on the DGPS by Correction Projection Using MSAS Correction

  • Yoon, Dong Hwan;Park, Byungwoon;Yun, Ho;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • Differential Global Positioning System-Correction Projection (DGPS-CP) algorithm, which has been suggested as a method of correcting pre-calculated position error by projecting range-domain correction to positional domain, is a method to improve the accuracy performance of a low price GPS receiver to 1 to 3 m, which is equivalent to that of DGPS, just by using a software program without changing the hardware. However, when DGPS-CP algorithm is actually realized, the error is not completely eliminated in a case where a reference station does not provide correction of some satellites among the visible satellites used in user positioning. In this study, the problem of decreased performance due to the difference in visible satellites between a user and a reference station was solved by applying the Multifunctional Transport Satellites (MTSAT) based Augmentation System (MASA) correction to DGPS-CP, instead of local DGPS correction, by using the Satellite Based Augmentation System (SBAS) operated in Japan. The experimental results showed that the accuracy was improved by 25 cm in the horizontal root mean square (RMS) and by 20 cm in the vertical RMS in comparison to that of the conventional DGPS-CP.

A Study on the Comparison of Real Time GNSS Satellite Surveying Methods (실시간 GNSS 위성측량기법의 비교연구)

  • Lee, Yong-Chang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.579-586
    • /
    • 2008
  • In this study, it was evaluated that the 3D tracking accuracy of basketball zone track line by real time GNSS satellite positioning methods which are VRS (Virtual Reference System), DGPS (Marine Differential GPS) and PP (Point Positioning) methods. The results of comparison between three methods over horizontal track of basketball zone, VRS, DGPS and PP methods showed ${\pm}$ several cm, ${\pm}$ m, and ${\pm}$ 2m horizontal position accuracy compared with real size respectively. And also, the grade and height deviation of the checking points on basketball zone by VRS method is very similar to the real grade and height, but results by DGPS and PP methods showed big variation and deviation in each case. We expected that VRS method using GNSS reference network will be a very useful tool compared with single based RTK method in real time accurate positioning such as precision construction fields, especially.

The Effect of Equatorial Spread F on Relative Orbit Determination of GRACE Using Differenced GPS Observations (DGPS기반 GRACE의 상대궤도결정과 Equatorial Spread F의 영향)

  • Roh, Kyoung-Min;Luehr, Hermann;Park, Sang-Young;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.499-510
    • /
    • 2009
  • In this paper, relative orbit of Low Earth Orbit satellites is determined using only GPS measurements and the effects of Equatorial Spread-F (ESF), that is one of biggest ionospheric irregularities, are investigated. First, relative orbit determiation process is constructed based on doubly differenced GPS observations. In order to see orbit determination performance, relative orbit of two GRACE satellites is estimated for one month in 2004 when no ESF is observed. The root mean square of the achieved baselines compared with that from K-Band Ranger sensor is about 2~3 mm and average of 95% of ambiguities are resolved. Based on this performance, the relative orbit is estimated for two weeks of two difference years, 2003 when there are lots of ESF occurred, and 2004 when only few ESF occurred. For 2003, the averaged baseline error over two weeks is about 15 mm. That is about 4 times larger than the case of 2004 (3.6 mm). Ionospheric status achieved from K-Band Ranging sensor also shows that more Equatorial Spread-F occurred at 2003 than 2004. Investigation on raw observations and screening process revealed that the ionospheric irregualarities caused by Equatorial Spread-F gave significant effects on GPS signal like signal loss or enhancement ionospheric error, From this study, relative orbit determination using GPS observations should consider the effect of Equatorial Spread-F and adjust orbit determination strategy, especially at the time of solar maximum.

Robust Positioning-Sensing for a Mobile Robot (모바일 로봇의 강인한 위치 추정 기법)

  • Lee, Jang-Myung;Hwang, Jin-Ah;Hur, Hwa-Ra;Kang, Jin-Gu
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.221-226
    • /
    • 2007
  • A robust position-sensing system is proposed in this paper for ubiquitous mobile robots which move indoor as well as outdoor. The Differential GPS (DGPS) which has position estimation error of less than 5 m is a general solution when the mobile robots are moving outdoor, while an active beacon system (ABS) with embedded ultrasonic sensors is selected as an indoor positioning system. The switching from the outdoor to indoor or vice versa causes unstable measurements on account of the reference and algorithm changes. To minimize the switching time in the position estimation and to stabilize the measurement, a robust position-sensing system is proposed. In the system, to minimize the switching delay, the door positions are stored and updated in a database. The reliability and accuracy of the robust positioning system based on DGPS and ABS are verified through the real experiments using a mobile robot prepared for this research and demonstrated.

  • PDF

Adaptive Bandwidth Algorithm for Optimal Signal Tracking of DGPS Reference Receivers

  • Park, Sang-Hyun;Cho, Deuk-Jae;Seo, Ki-Yeol;Suh, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.763-769
    • /
    • 2007
  • A narrow loop noise bandwidth method is desirable to reduce the error of raw measurements due to the thermal noise. However, it degrades the performance of GPS initial synchronization such as mean acquisition time. And it restricts the loop noise bandwidth to a fixed value determined by the lower bound of the allowable range of carrier-to-noise power ratio, so that it is difficult to optimally track GPS signal. In order to make up for the weak points of the fixed-type narrow loop noise bandwidth method and simultaneously minimize the error of code and carrier measurements, this paper proposes a stepwise-type adaptive bandwidth algorithm for DGPS reference receivers. In this paper, it is shown that the proposed adaptive bandwidth algorithm can provide more accurate measurements than those of the fixed-type narrow loop noise bandwidth method, in view of analyzing the simulation results between two signal tracking algorithms. This paper also carries out sensitivity analysis of the proposed adaptive bandwidth algorithm due to the estimation uncertainty of carrier-to-noise power ratio. Finally the analysis results are verified by the experiment using GPS simulator.

Investigation and Analysis of Shoreline Change using DGPS - Focusing on the Gangnung City Shore in Gangwondo - (DGPS를 이용한 해안선 변화 조사 및 분석 - 강원도 강릉시 연안을 중심으로 -)

  • Lee, Hyung-Seok;Kim, In-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • The tendency of erosion and accretion of the coast has occurred by the wanton development of a shore so that establishing the plans of nature preservation and development according to shoreline change is in demand. In this study, six DGPS positioning are executed in the periodic interval of about 2 months to choose coastal area of Gangnung, Gangwon-do and the observation data which is post-processed about 50cm accuracies on the Gangnung regular service is compared with digital map in 1998 and digital chart in 2006. Comparing DGPS values with shoreline of digital map, we know that erosion has occurred locally around training dike placed in Gangmun harbor and in southern Namhangjin, many accretions has happened near the breakwater of Namhangjin region and partial accretion is occurring in the other area. Therefore DGPS which is an acquisition method suitable for GIS data input is in use to collect the horizontal data and it could be used effectively to measure the shoreline change of time series through the long-term continuous observation by the coastal development.

  • PDF

Development of Low-cost RTK Device base on LTE-M for Precise Location Positioning (정밀 위치 측위를 위한 LTE-M 기반의 저가형 RTK 단말 개발)

  • Park, Chul-sun;Park, Sung-kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.565-567
    • /
    • 2018
  • The rover acquires its own position information using satellites signals provided by several satellites(at least four or more). For the present, GNSS systems are widely used in various fields. However, there are many factors that cause accuracy errors in positioning between rovers and GNSS satellites. Due to satellite time error, orbit error, ionospheric & convective refraction, multipath, etc., rover can't acquire precise position. Differential GPS(DGPS) and Real-Time Kinematic(RTK) have been developed as compensation techniques to reduce such errors. In this paper, we intend to develop a terminal with RTK technique to acquire precise position information of mobile station.

  • PDF