• Title/Summary/Keyword: Differential Coding

Search Result 116, Processing Time 0.026 seconds

Adaptive Video Coding by Wavelet Transform (웨이브렛 변환에 의한 적응적 동영상 부호화)

  • 김정일;김병천
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • In this paper, picture set filter is proposed for preserving compression ratio and video qualify. This filter controls the compression ratio of each frame depending on the correlation to the reference frame by selectively eliminating less important high-resolution areas. Consequently, video quality can be preserved and bit rate can be controlled adaptively. In the simulation, to test the performance of the proposed coding method, comparisons with the full search block matching algorithm and the differential image coding algorithm are made. In the former case, video quality, compression ratio and encoding time is improved. In the latter case, video quality is degraded, but compression ratio and encoding time is improved. Consequently. the proposed method shows a reasonably good performance over existing ones.

  • PDF

Image Coding by Block Based Fractal Approximation (블록단위의 프래탈 근사화를 이용한 영상코딩)

  • 정현민;김영규;윤택현;강현철;이병래;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.45-55
    • /
    • 1994
  • In this paper, a block based image approximation technique using the Self Affine System(SAS) from the fractal theory is suggested. Each block of an image is divided into 4 tiles and 4 affine mapping coefficients are found for each tile. To find the affine mapping cefficients that minimize the error between the affine transformed image block and the reconstructed image block, the matrix euation is solved by setting each partial differential coefficients to aero. And to ensure the convergence of coding block. 4 uniformly partitioned affine transformation is applied. Variable block size technique is employed in order to applynatural image reconstruction property of fractal image coding. Large blocks are used for encoding smooth backgrounds to yield high compression efficiency and texture and edge blocks are divided into smaller blocks to preserve the block detail. Affine mapping coefficinets are found for each block having 16$\times$16, 8$\times$8 or 4$\times$4 size. Each block is classified as shade, texture or edge. Average gray level is transmitted for shade bolcks, and coefficients are found for texture and edge blocks. Coefficients are quantized and only 16 bytes per block are transmitted. Using the proposed algorithm, the computational load increases linearly in proportion to image size. PSNR of 31.58dB is obtained as the result using 512$\times$512, 8 bits per pixel Lena image.

  • PDF

Self-Encoded Spread Spectrum and Turbo Coding

  • Jang, Won-Mee;Nguyen, Lim;Hempel, Michael
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • Self-encoded multiple access (SEMA) is a unique realization of random spread spectrum. As the term implies, the spreading code is obtained from the random digital information source instead of the traditional pseudo noise (PN) code generators. The time-varying random codes can provide additional security in wireless communications. Multi-rate transmissions or multi-level grade of services are also easily implementable in SEMA. In this paper, we analyze the performance of SEMA in additive white Gaussian noise (AWGN) channels and Rayleigh fading channels. Differential encoding eliminates the BER effect of error propagations due to receiver detection errors. The performance of SEMA approaches the random spread spectrum discussed in literature at high signal to noise ratios. For performance improvement, we employ multiuser detection and Turbo coding. We consider a downlink synchronous system such as base station to mobile communication though the analysis can be extended to uplink communications.

On the Comparison of MTF in Sub-Band Coding Technique Employing the Human Visual System (인간의 시각특성을 고려한 Sub-Band 부호화에서 MRF 비교에 관한 연구)

  • 김용관;박섭형;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.784-792
    • /
    • 1990
  • In this paper, attempts have been made to compare the subjective performance of sub-band coding (SBC) techniques incorporating four representative modulation transfer functions (MTF's) of th human visual system(HVS): Sakrison, Nill, Ngan, and Rao. In SBC, the frequency band of input signal is split into 16 equal sub-bands. In addition, 28 sub-band splitting schemd which splits more sub-bands in low spatial frequency is considered to compare the 4 MTF's effectively. In encoding of each sub-band, the weight of each sub-band obtained from the MTF of HVS is applied to bit allocation process which minimize the weighted mean square error (WMSE). The differential pulse code modulation(DPCM) coder is used to encode the lowest sub-band and the pulse code modulation(PCM) coder is used for the rest of sub-bands. It is found that the images incorporating the MTF of Rao yields the best results in subjective criteria, followed by Ngan, Nill, Sakrison, and the images not employing the HVS.

  • PDF

Efficient Differential Pixel Value Scanning Method for HEVC Lossless Intra Coding (HEVC 무손실 화면내 부호화를 위한 효율적인 차분 화소값 주사 방법)

  • Choi, Jung-Ah;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.234-235
    • /
    • 2012
  • 본 논문에서는 최근 표준화 활동이 진행 중인 HEVC(high efficiency video coding) 표준의 무손실 부호화 모드를 위한 효율적인 계수 주사 방법을 제안한다. 일반적으로 무손실 비디오 부호기에서는 부호화 손실을 없애기 위해 변환 및 양자화 모듈이 제거된다. 이 경우 부호화해야 할 잔여데이터는 양자화된 변환 계수가 아닌 예측 후의 차분 화소이므로 잔여데이터의 확률 분포가 변화된다. 제안한 방법에서는 무손실 부호화에서 화면내 예측 모드 별 잔여데이터의 발생 확률을 분석하고, 이를 고려해 역방향 모드 기반 차분 화소 주사 방법을 사용한다. 일반적으로 참조 화소와의 거리가 멀어질수록 예측 정확도가 떨어져 잔여데이터의 발생 확률이 높아지기 때문에 제안한 역방향 주사 방법을 사용하면 잔여데이터 부호화에서 이득을 얻을 수 있다. 실험을 통해, 제안한 방법이 HEVC 무손실 부호화에 비해 약 1.7%의 부호화 성능을 향상시키는 것을 확인했다.

  • PDF

On the Mismatch Phenomena in DPCM Coding of Speech (DPCM 음성 부호화기의 부정합현상에 관한 연구)

  • Yoo, Deuk Su;Cho, Dong Ho;Un, Chong Kwan
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.597-604
    • /
    • 1986
  • This paper describes various mismatch phenomena in differential pulse code modulation (DPCM) coding, such as the mismatch effects of probability density functin(pdf), signal variance, and correlation. At a high transmission rate(i.e., above 32 kbits/s), the performance of DPCM can be improved by matching the pdf shape between the input signal and the quantizer. However, the same gain cannot be obtained at a lower transmission rate. Also, it is shown that the gamma quantizer is realtively robust to the variation of pdf shaper and signal variance. Moreover, as the transmission rate increases, the performance of DPCM for the input signal with large variance is worse than that of DPCM for the signal with small variance due to the increase of overload noise. According to our simuladiton results, the mismatch effects of pdf shape and variance appear to yield more degradatin than that of correlation in a DPCM system.

  • PDF

On Speech Digitization and Bandwidth Compression Techniques[II]-Vocoding (음성신호의 디지탈화와 대역폭축소의 방법에 관하여[II]-Vocoding)

  • 은종관
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.6
    • /
    • pp.1-7
    • /
    • 1978
  • This paper deals with speech digitization and bandwidth compression techniques, particularly two predictive coding methods-namely, adaptive differential pulse code modulation(ADPCM) and adaptive delta modulation(ADM). The principle of a typical adaptive quantizer that is used in ADPCM is explained, and discussed. Also, three companding methods(instantaueous, syllabic, and hybrid companding) that are used in ADM are explained in detail, and their performances are compared. In addition, the performances of ADPCM and ADM as speech coders are compared, and the inerits of each coder are discussed.

  • PDF

Coding of LPC Parameters Using the Ordering Property of LSP in the Presence of Channel Errors (전송에러가 있는 채널에서 LSP 순서화특성을 이용한 선형예측계수(LPC)의 양자화 방법)

  • 이인성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.76-80
    • /
    • 1995
  • Differential pulse code modulation 구조의 Line spectrum pairs 양자화기에 높은 차수 LSP 파라미터 값은 낮은 차수 LSP 파라미터 값보다 커야한다는 LSP 파라미터의 순서화 특징을 이용하여 양자화하는 방법을 제시한다. 31 비트/프레임에서 1 dB 이하의 스펙트럴 왜곡을 갖는 명료한 음질을 보였다. 또한 LSP 주파수의 순서화 특성은 벡터-스칼라 결합 양자화기에 적용하였다. 벡터-스칼라 결합 양자화기에서는 26비트/프레임에서 명료한 음질을 보였다. 새로운 LSP 양자화 방법들은 전송에러 발생시 성능을 시험하고, 전송 에러에 강인하도록 프레임간 예측을 위해 Moving Average 예측기를 사용한다.

  • PDF

Low-Complexity Symbol Timing Offset Estimation Schemes for OFDM Systems

  • Park, So-Ra;Jung, Young-Ho;Lee, Son-In
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.247-250
    • /
    • 2002
  • In this paper, we propose three symbol syn-chronization schemes for Orthogonal Frequency Division Multiplex (OFDM) systems. The cyclic extension preceding OFDM symbols is of decisive importance for these schemes. The first scheme uses the phase-differential coding of the received OFDM signal. The second and the third schemes use the length of the received OFDM signal. All three schemes make symbol synchronization possible, even though there is a frequency off-set in the system. Simulation results show that these schemes can be used to synchronize an OFDM system over AWGN and multi-path fading channels.

  • PDF

Image of Artificial Intelligence of Elementary Students by using Semantic Differential Scale (의미분별법을 이용한 초등학생의 인공지능에 대한 이미지)

  • Ryu, Miyoung;Han, Seonkwan
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.5
    • /
    • pp.527-535
    • /
    • 2017
  • In this study, we analyzed the image of artificial intelligence recognized by elementary students using semantic differential scale. First, we extracted 23 pairs of image adjectives related to perception of artificial intelligence. Adjectives were classified into three types related to recognition, emotion and ability and 827 elementary students were examined. Image factors were classified into four factors: convenience, technological progress, human-friendliness, and concern. As a result, they showed a clear image that artificial intelligence is clever, new, and complex but exciting. In comparison with variables, female students, coding experience and older students thought that artificial intelligence was more human-friendly and technological progressive.