• Title/Summary/Keyword: Different carbon sources

Search Result 316, Processing Time 0.028 seconds

Techno-economic assessment of a very small modular reactor (vSMR): A case study for the LINE city in Saudi Arabia

  • Salah Ud-Din Khan;Rawaiz Khan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1244-1249
    • /
    • 2023
  • Recently, the Kingdom of Saudi Arabia (KSA) announced the development of first-of-a-kind(FOAK) and most advanced futuristic vertical city and named as 'The LINE'. The project will have zero carbon dioxide emissions and will be powered by clean energy sources. Therefore, a study was designed to understand which clean energy sources might be a better choice. Because of its nearly carbon-free footprint, nuclear energy may be a good choice. Nowadays, the development of very small modular reactors (vSMRs) is gaining attention due to many salient features such as cost efficiency and zero carbon emissions. These reactors are one step down to actual small modular reactors (SMRs) in terms of power and size. SMRs typically have a power range of 20 MWe to 300 MWe, while vSMRs have a power range of 1-20 MWe. Therefore, a study was conducted to discuss different vSMRs in terms of design, technology types, safety features, capabilities, potential, and economics. After conducting the comparative test and analysis, the fuel cycle modeling of optimal and suitable reactor was calculated. Furthermore, the levelized unit cost of electricity for each reactor was compared to determine the most suitable vSMR, which is then compared other generation SMRs to evaluate the cost variations per MWe in terms of size and operation. The main objective of the research was to identify the most cost effective and simple vSMR that can be easily installed and deployed.

GREENHOUSE GAS EMISSIONS FROM ONSITE EQUIPMENT USAGE IN ROAD CONSTRUCTION

  • Byungil Kim;Hyounkyu Lee;Hyoungbae Park;Hyoungkwan Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.286-291
    • /
    • 2011
  • Onsite usage of construction equipment accounts for a 6.8% of air pollution in Korea. The high concentration of carbon dioxide in such emissions impact not only climate change, but also people's health. However, greenhouse gas emissions from onsite equipment usage have not yet been fully investigated. This study presents a comparative analysis on how much greenhouse gas is generated by various equipment types used in different construction activities. Two ongoing cases which involve a typical road construction project in Korea were selected for the comparison purpose. Greenhouse gas emissions from each onsite equipment usage of the different activities were estimated on the ground of design documents. The estimates were compared and analyzed to derive the main sources of greenhouse gas emissions. The result showed that earthwork constituted the largest part-more than 90%-among work types. Dump truck, bulldozer, and loader were major sources for such emissions. The study results are expected to be used as a basis for reduction of greenhouse gas emission from onsite equipment usage.

  • PDF

Determination of Amino Acids on Wintertime PM2.5 using HPLC-FLD (HPLC-FLD를 이용한 겨울철 PM2.5 중 아미노산 성분 분석)

  • Park, Da-Jeong;Cho, In-Hwan;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.482-492
    • /
    • 2015
  • Ground-based measurements were conducted from January 6 to 12 of 2015 for understanding characteristics of nitrogen containing carbonaceous aerosols as 16 amino acids at the Mokpo National University, Korea. The detailed amino acid components such as Cystine ($(SCH_2CH(NH_2)CO_2H)_2$) and Methionine ($C_5H_{11}NO_2S$) and their sources were analyzed by High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FLD) for behavior of secondary products in particulate matter. In addition, organic carbon (OC) and elemental carbon (EC) based on the carbonaceous thermal distribution (CTD), which provides detailed carbon signature characteristics relative to analytical temperature, and water soluble organic carbon (WSOC) by total organic carbon (TOC) analyzer were used to understand the carbon compound behaviors. The backward trajectories were discussed for originations of carbonaceous aerosols as well. Different airmasses were classified with the amino acids and OC thermal signatures. The results can provide to understand the aging process influenced by the long-range transport from East Sea area.

The Responses of a Small Lake Watershed to an Inorganic Carbon Cycle (무기탄소 순환에 대한 소규모 호수 유역의 반응)

  • Cho, Youngil
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.610-617
    • /
    • 2013
  • Investigating the budgets of alkalinity and dissolved inorganic carbon (DIC) in lake water systems is significant for the examination of the behavior of a lake as a sink or a source with respect to the circulation of inorganic carbon chemistry. Budgets of total alkalinity ($Alk_T$) and DIC in Onondaga Lake, which was polluted by chronic calcium (Ca) loading in spite of the closure of soda ash ($Na_2CO_3$) facility, were determined by the analyses of inorganic carbon chemistry in tributary stream channels linked to the lake. AlkT and DIC fluxes of Onondaga Creek and Ninemile Creek occupied 65% and 54%, respectively, as larger tributary streams in comparison with other tributaries as well as different input sources. Budget calculations indicate that 18% of AlkT and 11% of DIC inputs to Onondaga Lake, respectively, remained immobilized in the Lake. This suggests that Ca chronically leached had been precipitated with inorganic carbon or remineralized by secondary mineral formation during the experimental period. In this study, the assumed mass balance calculation in Onondaga Lake with tributary streams resulted in exhibiting that the lake played a role of the sink for the inorganic carbon cycle.

Emission Reduction of Air Pollutants Produced from Chemical Plants

  • Lee, Byeong-Kyu;Cho, Sung-Woong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.29-38
    • /
    • 1999
  • This study identified emission sources and emissions of air pollutants such as volatile organic compounds (VOCs), solvents, and acid gases produced from chemical plants. We collected air samples from various processes, reactors and facilities using VOC detectors and workers' experience. We identified chemical structures and emission concentrations of air pollutants. We analyzed total emissions of air pollutants emitted from the chemical plants. Also, we developed some emission reduction technologies based on chemical types and emission situations of the identified air pollutants. For reduction of air emissions of acid gases, we employed a method improving solubility of pollutants by reducing scrubber operation temperature, increasing surface area for effective contact of gas and liquid, and modifying or changing chemicals used in the acid scrubbers. In order to reduce air emissions of both amines and acid gases, which have had different emission sources each other but treated by one scrubber, we first could separate gas components. And then different control techniques based on components of pollutants were applied to the emission sources. That is, we first applied condensation and then acid scrubbing method using H2SO4 solution for amine treatment. However, we only used an acid scrubbing method using H2O and NaOH solution for acid gas treatment. In order to reduce air emissions of solvents such as dimethylformamide and toluene, we applied condensation and activated carbon adsorption. In order to reduce air emissions of mixture gases containing acid gases and slovents, which could not be separated in the processes, we employed a combination of various air pollution control devices. That is, the mixture gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. In addition, for improvement of condensation efficiency of VOCs, we changed the type of the condensers attached in the reactors as a control device modification. Finally, we could successfully reduce air emissions of pollutants produced from various chenmical processes or facilities by use of proper control methods according to the types and specific emission situations of pollutants.

  • PDF

Fluorescence Properties of Size Fractions of Dissolved Organic Matter Originated From Different Sources (생성 기원에 따른 용존 자연유기물질 분자량별 형광특성 비교)

  • Hur, Jin;Park, Min-Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.482-489
    • /
    • 2007
  • Fluorescence properties and carbohydrate content were investigated using ultrafiltrated size fractions of dissolved organic matters (DOM) originated from different sources. The materials included a treated sewage, an algal organic matter, and a soil leachate, all of which are major constituents of dissolved organic matter in a typical urban river. Four different size fractions were separated from the three sources of each DOM. The size distribution demonstrated that a higher molecular weight fraction was more present in soil leachate compared to two other source DOMs. A higher content of carbohydrates was observed in the following order - algal DOM > treated sewage > soil leachate. A wide range of specific UV absorbance was observed from size fractions of a single source DOM, indicating that aromatic carbon structures are heterogeneously distributed within one source of DOM. The structural heterogeneity was the most pronounced for the soil leachate. The fluorescence index ($F_{450}/F_{500}$) of the treated sewage was similar to that (2.0) typically obtained from autochthonous DOM, suggesting that the treated sewage exhibited autochthonous organic matter-like properties. No protein-like fluorescence intensities were observed for all of the soil leachate size fractions whereas they were observed with two other source DOMs. Based upon the fluorescence peak ratios from fluorescence excitation-emission matrix (EEM), two discrimination indices could be suggested to distinguish three different source DOMs. It is expected that the suggested discrimination indices will be useful to predict the sources of DOM in a typical urban river affected by treated sewage.

Linkage Between Biodegradation of Polycyclic Aromatic Hydrocarbons and Phospholipid Profiles in Soil Isolates

  • Nam, Kyoung-Phile;Moon, Hee-Sun;Kim, Jae-Young;Kukor, Jerome-J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 2002
  • A bacterial consortium capable of utilizing a variety of polycyclic aromatic hydrocarbons has been isolated from a former manufactured gas plant site. The consortium consisted of four members including Arthrobacter sp., Burkholderia sp., Ochrobacterium sp., and Alcaligenes sp., which were identified and characterized by the patterns of fatty acid methyl esters (FAME analysis) and carbon source utilization (BIOLOG system). With the individual members, the biodegradation characteristics of aromatic hydrocarbons depending on different growth substrates were determined. FAME analyses demonstrated that microbial fatty acid profiles changed to significant extents in response to different carbon sources, and hence, such shift profiles may be informative to characterize the biodegradation potential of a bacterium or microbial community.

Production of siderophore from L-glutamic acid as both carbon and nitrogen sole sources in Acinetobacter sp. B-W (글루탐산을 유일한 탄소원과 질소원으로 이용하는 Acinetobacter sp. B-W의 시드로포어 생산)

  • Kim, Kyoung-Ja;Jang, Ju-Ho;Yang, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • Catechol type siderophore different from 2, 3-dihydroxybenzoic acid (DHB) was produced from Acinetobacter sp. B-W grown in medium containing L-glutamic acid as both carbon and nitrogen sole sources at $28^{\circ}C$. Optimal concentration of glutamic acid for siderophore production was 3% and production of siderophore was decreased above 3% glutamic acid. In previous report, siderophore, 2, 3-DHB was produced from strain B-W grown in medium containing glucose as carbon source and glutamic acid as nitrogen source. Rf value of siderophore produced from strain B-W grown in medium glutamic acid as both carbon and nitrogen sole sources at $28^{\circ}C$ was 0.32, while 2, 3-DHB was 0.84 in butanol-acetic acid-water (12:3:5) as developing solvent. Antioxidative activity of 2, 3-DHB was not detected in that siderophore produced from glutamic acid. Catechol nature of siderophore was detected by Arnow test. Although in iron-limited media optimal cell growth was identified at $36^{\circ}C$, significant quantities of siderophore were produced only at $28^{\circ}C$. Biosynthesis of siderophore was strongly inhibited by growth at $36^{\circ}C$. Production of siderophore was completely inhibited by $10{\mu}M\;FeCl_3$.

Optimum Conditions for the Removal of External Organic Carbon Sources in a Submerged Denitrification Biofilter (탈질 여과조에서 외부 탄소원 제거를 위한 적정 체류 시간과 외부 탄소원 종류 및 질산염 농도에 대한 외부 탄소원의 적정 비율)

  • 오승용;조재윤;윤길하
    • Journal of Aquaculture
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 1999
  • Denitrification by anaerobic bacteria is one of the most common processes of removing nitrate from recirculating aquaculture systems. This process is affected by many factors such as external carbon sources, hydraulic retention time (HRT), and $COD/NO_3-N$ ratio. Although external organic carbon sources are essential for the denitrification process, these also contribute to increase dissolved organic carbon concentration in recirculating aquaculture systems. So these external organic carbons must be removed from the systems. This study was conducted to find out the optimum operating conditions for the removal of external organic carbons in a submerged denitrification biofilter. Combinations of two external carbon sources (glucose and methanol), two HRT (4- and 8-hour), and four different C:N ratios (3, 4, 5, and 6) were used in this experiment. The removal efficiencies of organic carbon sources at 8-hour HRT were always better than those at 4-hour's (P<0.05). Maximum removal efficiencies were achieved when C:N ratio was 5 in both glucose and methanol. The removal efficiencies of methanol were always better than those of glucose. The maximum removal efficiencies of glucose and methanol were 76.5% and 84.0%, respectively and the removal rates were 223.5 $g/m^2/day$ and 247.1$g/m^2/day$. The maximum removal rates of glucose (290.9 $g/m^2/day$) and methanol (355.6 $g/m^2/day$) were achieved at 4-hour HRT and 5 C:N ratio. But the concentrations of SCOD in the effluent of both glucose ($52.5 mg/\ell$) and methanol ($40.9 mg/\ell$) were too high for rearing fish. Therefore, the optimum operating conditions for the removal of external carbon in a submerged denitrification biofilter were 8-hour HRT and 5 C:N ratio. And methanol showed better efficiency as an external carbon sources.

  • PDF

Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics (탄소 원료가 다공질 Self-Bonded SiC (SBSC) 세라믹스의 기공율과 곡강도에 미치는 영향)

  • Lim, Kwang-Young;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.430-437
    • /
    • 2008
  • Porous self-bonded silicon carbide (SBSC) ceramics were fabricated at temperatures ranging from 1700 to $1850^{\circ}C$ using SiC, silicon (Si), and three different carbon (C) sources, including carbon black, phenol resin, and xylene. The effects of the Si:C ratio and carbon source on porosity and strength were investigated as a function of sintering temperature. Porous SBSC ceramics fabricated from phenol resin showed higher porosity than the others. In contrast, porous SBSC ceramics fabricated from carbon black showed better strength than the others. Regardless of the carbon source, the porosity increased with decreasing the Si:C ratio whereas the strength increased with increasing the Si:C ratio.