• Title/Summary/Keyword: Different Material

Search Result 9,655, Processing Time 0.035 seconds

A Study on the Electrochemical Properties of the Cathode upon Different Kinds of Activated carbon in Zinc/Air Battery (활성탄 종류에 따른 아연공기전지용 Cathode의 전기화학적 특성 연구)

  • 김지훈;엄승욱;문성인;윤문수;김주용;박정식;박정후
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.415-421
    • /
    • 2004
  • The voltage profile of Zinc/Air battery during discharge has very flat pattern in a given voltage range, But, if not enough the porosity in cathode, as a result of that capacity, energy and discharge voltage of batteries become low. Therefore, we focused the pore effects in activated carbon for cathode. We examined discharge voltage, specific capacity, specific energy, resistance and characteristics during the GSM pulse discharge upon different kinds of activated carbon in Zinc/Air battery, Also we measured porosity of the air cathode according to the ASTM. So we achieved improvement of specific capacity, specific energy and discharge voltage according to increase meso pores of activated carbon. We found the optimized activated carbon material for Zinc/Air battery.

I A Study on Development of the EM Wave Absorber for Eliminating False Image in a Collision-Avoidance Radar (차량충돌방지 레이더의 허상방지 대책용 전파흡수체 개발에 관한 연구)

  • Choi, Chang-Mook;Kim, Dong-Il;Park, Woo-Keun;Ko, Kwang-Soob
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.107-108
    • /
    • 2007
  • In this paper, the EM wave absorbers were designed and fabricated for collision-avoidance radars using Carbon of a dielectric material and Permalloy of a magnetic material with CPE, because radar system has some problems including false image and system-to-system interference. We fabricated some samples in different composition ratio of Carbon and Permalloy, and defined that optimum composition ratios of Carbon and Permalloy with CPE were Carbon:CPE=20:80 wt% and Permalloy:CPE=70:30 wt%. And absorption abilities at different thicknesses of the EM wave absorbers were simulated using the material properties. The EM wave absorbers were manufactured based on the simulated design. Simulated and measured results agree very well.

  • PDF

A compressible finite element model for hyperelastic members under different modes of deformation

  • Manna, M.C.;Sheikh, A.H.;Bhattacharyya, R.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.227-245
    • /
    • 2006
  • The performance of a three dimensional non-linear finite element model for hyperelastic material considering the effect of compressibility is studied by analyzing rubber blocks under different modes of deformation. It includes simple tension, pure shear, simple shear, pure bending and a mixed mode combining compression, shear and bending. The compressibility of the hyperelastic material is represented in the strain energy function. The nonlinear formulation is based on updated Lagrangian (UL) technique. The displacement model is implemented with a twenty node brick element having u, ${\nu}$ and w as the degrees of freedom at each node. The results obtained by the present numerical model are compared with the analytical solutions available for the basic modes of deformation where the agreement between the results is found to be satisfactory. In this context some new results are generated for future references since the number of available results on the present problem is not sufficient enough.

Preparation of Anode Material for Lithium Secondary Battery using Pitch-coated Graphite Residue Compounds

  • Ko, Young-Shin;Oh, Won-Chun
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.207-213
    • /
    • 2007
  • The properties and electrochemical characteristics of anode material using pitch-coated graphite residue compounds by heat-treatment at $600^{\circ}C$ for 1 hour were investigated. The distance of layers of pitch-coated graphite residual compounds was 3.3539 ${\AA}$, which was as same as that of graphite. Its electrochemical and charge discharge characteristics were tested according to different four types of carbon material, natural graphite, pitch-coated graphite, amorphous graphite and pitch-coated graphite residual compounds, respectively. So it was shown the best charge-discharge characteristics in all of the samples. For the electrochemical and charge-discharge characteristics, although pitch-coated graphite residual compounds had different carbon contents 70% and 80%, these two samples were shown good electrochemical and charge-discharge characteristics.

Using Lamb Waves to Monitor Moisture Absorption in Thermally Fatigued Composite Laminates

  • Lee, Jaesun;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

Elastoplastic nonlinear behavior of planar steel gabled frame

  • Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.397-413
    • /
    • 2019
  • In this paper, static nonlinear analysis of gable frame is performed using OpenSees software. Both geometric and material nonlinearities are considered in analyses. To consider large displacements, co-rotational coordinate transformation is used in software. The effects of symmetric and asymmetric support conditions including clamped and simple supports are studied. On the other hand, the material nonlinearity is reflected on analyses using Giuffre-Menegotto-Pinto steel material. Note that strain hardening characteristics are also considered in this model. Moreover, I-shaped cross-section is assumed for all members. The results are provided for different geometry properties of gable frame including shallow and deep inclined roof. It should be added that buckling and post-buckling behaviors of gable frame are investigated using related equilibrium paths. A comparison study is also implemented on the responses of buckling loads obtained for different support and geometry conditions. To trace snap-through paths completely, a displacement control method entitled arc-length is utilized. Findings show the capability of proposed model in nonlinear analysis of gable frames.

Damage detection on two-dimensional structure based on active Lamb waves

  • Peng, Ge;Yuan, Shen Fang;Xu, Xin
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.171-188
    • /
    • 2006
  • This paper deals with damage detection using active Lamb waves. The wavelet transform and empirical mode decomposition methods are discussed for measuring the Lamb wave's arrival time of the group velocity. An experimental system to diagnose the damage in the composite plate is developed. A method to optimize this system is also given for practical applications of active Lamb waves, which involve optimal arrangement of the piezoelectric elements to produce single mode Lamb waves. In the paper, the single mode Lamb wave means that there exists no overlapping among different Lamb wave modes and the original Lamb wave signal with the boundary reflection signals. Based on this optimized PZT arrangement method, five damage localizations on different plates are completed and the results using wavelet transform and empirical mode decomposition methods are compared.

Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation

  • Arefi, Mohammad;Allam, M.N.M.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.81-100
    • /
    • 2015
  • This paper presents nonlinear analysis of an arbitrary functionally graded circular plate integrated with two functionally graded piezoelectric layers resting on the Winkler-Pasternak foundation. Geometric nonlinearity is considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential is assumed as a quadratic function along the thickness direction. After derivation of general nonlinear equations, as an instance, numerical results of a functionally graded material integrated with functionally graded piezoelectric material obeying two different functionalities is investigated. The effect of different parameters such as parameters of foundation, non homogenous index and boundary conditions can be investigated on the mechanical and electrical results of the system. A comprehensive comparison between linear and nonlinear responses of the system presents necessity of this study. Furthermore, the obtained results can be validated by using previous linear and nonlinear analyses after removing the effect of foundation.

Effect of nanoparticle material for heat transfer enhancement (열전달 향상을 위한 나노물질 코팅재료의 영향에 대한 연구)

  • Jeon, Yong-Han;Kim, Nam-Jin
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • Nucleate boiling heat transfer is one of the most important phenomenon in the various industries. Especially, critical heat flux (CHF) refers to the upper limit of the pool boiling heat transfer region. Therefore, many researchers have found that CHF can be significantly increased by adding very small amounts of nanoparticles. In this study, the CHF and heat transfer coefficient were tested under the pool boiling state using copper and multi wall carbon nanotube nanoparticles. The results showed that two different types of nanoparticles deposited on the surface of two specimens made of the same material increased the heat flux in the nanoparticles with high conductivity, and there was no difference in the critical heat flux when the same material nanoparticles were deposited on the two different specimen surfaces.

Spectral Computed Tomography: Fundamental Principles and Recent Developments

  • Aaron So;Savvas Nicolaou
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.86-96
    • /
    • 2021
  • CT is a diagnostic tool with many clinical applications. The CT voxel intensity is related to the magnitude of X-ray attenuation, which is not unique to a given material. Substances with different chemical compositions can be represented by similar voxel intensities, making the classification of different tissue types challenging. Compared to the conventional single-energy CT, spectral CT is an emerging technology offering superior material differentiation, which is achieved using the energy dependence of X-ray attenuation in any material. A specific form of spectral CT is dual-energy imaging, in which an additional X-ray attenuation measurement is obtained at a second X-ray energy. Dual-energy CT has been implemented in clinical settings with great success. This paper reviews the theoretical basis and practical implementation of spectral/dual-energy CT.