• Title/Summary/Keyword: Diesel premixed compression ignition

Search Result 45, Processing Time 0.022 seconds

Flame and Combustion Characteristics of D.I. HCCI Diesel Engine using a Visualization Engine (가시화 엔진을 이용한 직분식 예혼합 압축착화 디젤엔진의 화염 및 연소특성)

  • 권오영;류재덕;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.100-107
    • /
    • 2002
  • Combustion characteristics of diesel engine depends on mixture formation process during Ignition delay and premixed flame region. Fuel and air mixture formation has a great influence on the exhaust emission. Therefore, the present study focused on the combustion mechanism of Homogeneous Charge Compression Ignition (HCCI) engine. This study was carried out to investigate the combustion characteristics of direct injection type HCCI engine using a visualization engine. To investigate the combustion characteristics, we measured cylinder pressure and calculated heat release rate. In addition, we investigated the flame development process by using visualization engine system. From the experimental result of HCCI engine, we observed that cool flame was always appeared in HCCI combustion and magnitude of cool flame was proportional to magnitude of hot flame. And we also found that fuel injection timing is more effective to increase lean homogeneous combustion performance than intake air temperature. Since increasing the intake air temperature improved fuel vaporization before the fuel atomizes, we concluded that increasing the temperature has disadvantage fur homogeneous premixed combustion.

Effect of Cooled-EGR on the Characteristics of Performance and Exhaust in a HCCI Diesel Engine (균일 예혼합 압축 착화 디젤 엔진의 성능 및 배출물 특성에 미치는 Cooled-EGR 효과)

  • Lee, Chang-Sik;Yoon, Young-Hoon;Kim, Myung-Yoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.35-41
    • /
    • 2005
  • The effects of cooled-ECR on the characteristics of combustion and exhaust emissions were investigated in a single cylinder HCCI diesel engine The premixed charge (gasoline or diesel) was obtained with premixing chamber and high-pressure (5.5MPa) injection system. Exhaust pressure control and cooled ECR system were used in order to reduce pressure fluctuation and to mix the exhaust gas well with the fresh intake air. The experimental results show that NOx emissions from conventional diesel engine are steeply decreased by HCCI diesel combustion with cooled-EGR in both case of gasoline and diesel premixing. But soot emissions are rapidly increased with the increase of ECR rate. The recycled exhaust gas increased the ignition delay of mixture and decreased maximum combustion pressure. HC and CO emissions of HCCI combustion are increased with ECR rate.

Effects of Injection Strategies on the Partial Premixed Charge Combustion and Emission Characteristics in a Diesel Engine (디젤엔진의 부분 예혼합 연소 및 배기 특성에 대한 분사전략의 영향)

  • Kim, Jaewoong;Kim, Yungjin;Park, Sangki;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.83-88
    • /
    • 2013
  • Recently, PCCI (premixed charge compression ignition) combustion is studied to reduce both NOx and PM because of homogeneous mixture formation and lower combustion temperature. It has also merit of increasing thermal efficiency owing to better air-fuel mixure. However, it is well known that PCCI combustion has a weakness in fuel economy because PCCI combustion tends to start before TDC. Therefore, it is necessary to find an optimal conditions for PCCI combustion which maintains reduction of NOx, PM and increase of thermal efficiency. In this study, pPCCI combustion was realized by adding early injection strategy to a conventional diesel engine. In addition, the characteristics of pPCCI combustion was analized by comparing conventional diesel injection strategy. The results show that NOx and PM per power in pPCCI combution were reduced compared to a conventional diesel combustion.

The Effects of Engine Speed and Load of the Partial Premixed Diesel Compressed Ignition Engine Applied with the Split Injection Method on Exhaust Gas and IMEP Characteristics (2단 분사방식을 적용한 부분 예혼합 디젤 압축착화 연소 엔진의 회전속도 및 부하 변화가 배출 가스 및 IMEP특성에 미치는 영향)

  • Kang, Jeong-Ho;Lee, Sung-Man;Chung, Jae-Woo;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.162-170
    • /
    • 2007
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. Anew concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogeneous charge compression ignition (HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. And it is investigated that the effects of the engine rpm and load(or A/F) to emission characteristics.

A Study on the Mixture Formation Process and Combustion Characteristics According to Injection Timing in Premixed Charge Compression Ignition (예혼합 압축착화 디젤엔진의 분사시기 변화에 따른 혼합기 형성 과정 및 연소 특성에 관한 연구)

  • Cho, Byung-Ho;Han, Yong-Tak;Lee, Ki-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1692-1698
    • /
    • 2002
  • A diesel engine has various merits such as high thermal-efficiency, superior fuel consumption and durability. Therefore the number of diesel engine in the world is increasing. As the seriousness of environmental pollution increases in the world, the method to reduce the noxious materials of $CO_2$, NOx and P.M. is very important subject to correspond to exhaust gas regulations. A new concept, so called premixed charge diesel combustion(PCCI), is focused among the various corresponding manners. In this study, we investigated the mixture formation within the cylinder with injection timing using GTT simulation code and also compared combustion characteristics of PCCI engine with that of commercial diesel engine. From this experiments, it could be found that homogeneous mixture formation was observed according to advance of injection timing and simultaneous reduction of NOx and Soot in injection timing of BTDC 60$^{\circ}$.

Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump (기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정)

  • Cho, S.H.;Yoo, S.H.;Lee, B.H.;Kim, D.H.;Lee, D.Y.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.

The Effects of EGR and Hydrogen Enriched Gas on Diesel HCCI Engine (디젤 예혼합 압축착화 엔진에서 EGR 및 수소농후가스의 영향)

  • Park, Cheol-Woong;Cho, Jun-Ho;Oh, Seung-Mook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In recent years, there has been an interest in early-injection diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to standard diesel engine. The more homogeneous mixture may result in reduced NOx and soot emissions and higher efficiency in homogeneous charge compression ignition engines. While earlier studies have shown that a reduction in NOx emissions from HCCI engine is possible, there are some significant problems including the control of ignition timing and combustion rate. In order to investigate the effect of EGR and hydrogen enriched gas on combustion characteristics and emissions, an experiments with single cylinder CRDi engine were carried out concerning the formation of various premixed charge, which can achieved by early injection, EGR and hydrogen enriched gas. EGR was not effective to further reduce NOx and PM emissions. It was found that NOx emissions were decreased with an introduction of hydrogen enriched gas and an adequate diesel fuel amount.

A Study on the PCCI Combustion Characteristics and Flame Visualization in a Diesel Engine (디젤엔진에서의 PCCI 연소 특성과 화염 가시화에 관한 연구)

  • Park, Jinkyu;Lee, Jaemin;Kim, Hyungik;Kim, Yungjin;Lee, Kihyung
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.191-193
    • /
    • 2012
  • The use of diesel engines has recently increased due to the need for internal combustion engines with a high thermal efficiency and low harmful exhaust gas. The PCCI(premixed charged compression ignition) technology has been studied specifically to simultaneously reduce NOx and PM. While the PCCI means has the merit of reducing NOx and PM, control of the combustion phase is difficult. In this study, Flame visualization was then performed with an endoscope system in order to compare combustion flame characteristics in an commercial diesel engine.

  • PDF

2색법에 의한 에멀죤 연료의 화염온도 및 soot 분포 측정에 관한 실험적 연구

  • Park, Jae-Wan;Park, Gwon-Ha;Heo, Gang-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.103-110
    • /
    • 1998
  • This experiment is performed to investigate the effects of the emulsion on the flame temperature and soot formation in a diesel engine. The two-color method is used to measure the flame temperature for combustion of emulsified diesel in the Rapid Compression and Expansion Machine(RCEM). The concentration of soot is estimated via calculation of the KL factor. The solenoid valve, elecronic controller and needle lift sensor are used to control the exact injection timing and duration under various operating conditions. According to the results the soot concentration is reduced with the increasing W/O while the temperature reduced. The pressure data and the flame images captured by a high speed camera show that the ignition delay of emulsified diesel increase the duration of premixed combustion. The sizes of water drops are measured to be about 10${\mu}m$ by a microscope.

  • PDF

Study on Noise Generation Characteristics of Simulated EGR System for Compression Ignition Diesel Engine (압축착화 디젤엔진의 모사 EGR 시스템에 의한 소음 특성 변화 분석)

  • Park, B.;Yoon, S.;Park, S.;Park, J.
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.204-210
    • /
    • 2014
  • Experimental study was conducted to investigate the effect of EGR(exhaust gas recirculation) on engine noise using single cylinder combustion ignition engine. Under constant engine rotary speed of 1200 RPM, 8 mg fuel quantity was injected with 15, 18 and 21% of oxygen ratio and 1400 bar of injection pressure. Using the in-cylinder pressure data acquired by a piezoelectric transducer, the engine performance parameters were calculated. Radiated engine noise measured for 10 seconds was analyzed using spectral characteristics and sound quality metrics such as loudness, sharpness, roughness. From the obtained engine performance parameters and sound quality metrics, effect of oxygen ratio of the premixed air, start of injection timing on frequency characteristic and sound quality metrics were analyzed. Correlation analysis was conducted between MPRR(maximum pressure rise rate), RI(ringing intensity) and sound quality metrics. RI was identified as the most important factor having influence on the sound quality metrics.