• Title/Summary/Keyword: Diesel oil

Search Result 663, Processing Time 0.028 seconds

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

Effects of Aging and Soil Texture on Composting of Diesel-Contaminated Soil (디젤오염기간 및 토성이 오염토양 콤포스팅 처리에 미치는 영향)

  • Choi, Jung-Young;Namkoong, Wan;Park, Joon-Seok;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • This study was carried out to investigate the effects of aging and soil texture on composting of diesel-contaminated soil. The soils used for this study were silt loam and sand. Target contaminant, diesel oil, was spiked at 10,000mgTPH/kg of dry soil. Aging times of diesel-contaminated soils were 15days and 60days, respectively. Fresh diesel-contaminated soil was also investigated. Moisture content was controlled to 70% of soil field capacity. Mix ratio of soil to sludge was 1:0.3 as wet weight basis. Temperature was maintained at $20^{\circ}C$ Volatilization loss of TPH was below 2% of initial concentration. n-Alkanes lost by volatilization were mainly by the compounds of C10 to C17. Diesel in contaminated soil was mainly removed by biodegradation mechanism. First order degradation rate constant of TPH in sandy soil was ranged from 0.081 to 0.094/day, which is higher than that in silt loam(0.056-0.061/day). From fresh to 60day-aged soils, there was little difference of TPH biodegradation rate between the soils. Carbon recovery ranged from 0.61 to 0.89. TPH degradation rate was highly correlated with $CO_2$ production rate.

  • PDF

The Characteristics of Exhaust Emissions by Durability Test with Biodiesel Fuel (20%) in a Commercial CRDI Diesel Engine (상용 CRDI 디젤기관에서 바이오디젤유 20% 적용시 내구시험에 따른 배기배출물 특성)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.379-383
    • /
    • 2008
  • A CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 20% biodiesel blended fuel (BDF 20%) and tested at the Seoul-10 mode for 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. To check the engine parts (valve, injector), the engine was inspected after 150 hours running test. It was concluded that there was no unusual deterioration of the engine, or the changes in engine power (below 1.9%), smoke (below 4.1%), NOx (below 3.7%) and durability characteristics in spite of operation of 150 hours run with BDF 20%. The difference of kinetic viscosity for engine oil (before and after durability testing) was below 0.19% at $100^{\circ}C$.

The Effect of Auxiliary use LPG on the Performance of a D.I Diesel Engine (LPG를 보조적으로 사용한 직접분사식 디젤기관의 성능에 관한 연구)

  • Bang Joong Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.138-145
    • /
    • 2005
  • Recently, the tightening of an available crude oil supplies has resulted in the development of intense consciousness for saving fuels. At the same time, some research programs have been launched to secure substitute energy sources for petroleum-derived fuels, and to reduce unhealthy products, such as CO, HC, NOx and smoke. To keep up with these trends in society, the regulation affecting diesel smoke may be greatly strengthened in a short time. In not too distant future, LPG and LNG are the most hopeful substitute fuels for automobile and truck uses. This paper discusses how to use such gaseous fuels in a diesel engine, and how much methods for introducing these fuels affect the engine performance.

Experimental Study to Improve the Performance and Emission of CNG Dual Fuel Diesel Engine Mixed with Hydrogen (CNG Dual Fuel 디젤기관의 성능과 배출가스 개선을 위한 수소혼합 실험)

  • ;Masahiri Shioji
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.83-88
    • /
    • 2000
  • In this study, the performance and pollutant emission of CNG engine using diesel oil as a source of ignition, so called CNG dual fuel diesel engine is considered by experiment. One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of total hydrocarbon (THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. and when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the knocking limit decrease and the produce of NOx increases.

  • PDF

A Study on the Performance of Diesel Automobile of Ultrasonic Fuel Supply System(I) -About the Droplet Size Distribution of Ultrasonic Fuel Supply System - (초음파(超音波) 연료공급장치용(燃料供給裝置用) 디젤자동차(自動車)의 성능(性能) 향상(向上) 관한 연구(I) -초음파 연료공급장치를 통과한 연료의 분무특성에 대하여-)

  • Choi, D.S.;Seol, J.H.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • This study carried out to investigate the spray characteristics of diesel oil through out ultrasonic fuel supply system in comparison with conventional. Size of the droplets comprising diesel spray was measured by immersed liquid method at different positions along the spray axis. Droplets distribution diagram was ploted and Sauter Mean Diameter(SMD) was also calculated. The effects of the ultrasonic vibration and injection pressure on the droplet size distribution and SMD were investigated. As the ultrasonic vibration supply SMD decreases on the same injection pressure conditions with conventional injector's. But the effect of ultrasonic vibration decreases with injection pressure increasing.

  • PDF

Study on Lubrication Characteristics of Lubrication for Lubricity Improver in Dimethyl Ether (디메틸에테르에 첨가된 윤활성향상제의 윤활특성에 관한 연구)

  • Park, Cheonkyu;Jang, Eunjung;Jung, Choongsub;Lee, Bonghee;Na, Byungki
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.117-123
    • /
    • 2013
  • Dimethyl ether (DME) has a high cetane number that is suitable for diesel fuel. DME does not contain sulfur or nitrogen, and is an oxygenated fuel so it produces no particulate matter when combusted and is environmentally friendly. DME fuel for diesel engines show excellent material properties such as a lower volumetric heating value, lower boiling point, lower lubricity, and stronger solvent effect than light oil. This study experimentally examined a lubricity improver (LI) for dimethyl ether. A diesel LI based on biodiesel and fatty acid methyl ester was tested among DME LI candidates. The long-term storage stability and physical properties of the optimum LI for DME were determined.

Study on the Improvement of Output Fluctuation from Generator Driven by Large Size-Low Speed Diesel Engine (대형저속 디젤엔진 구동 발전기의 출력변동 개선에 관한 연구)

  • 김영주;전효중;이돈출;이충기
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.6-16
    • /
    • 1992
  • Since world-wide oil shock on 1970s, many large size-low speed diesel engines, instead of steam turbines, are used for the industrial electric power generating plants due to their economic advantage of low specific fuel consumption. But it is very important to control their electric power fluctuation problems for the purpose of smooth parallel operation with existing power plants. In this paper the fluctuation problem of KEPCO Nam-cheju No.1 generator driven by diesel ngine(B & W 7K 60MC, 13931x138.5RPM) is investigated with analysis of torsional vibration of which 4th harmonic component is related to its power fluctuation. The problem can be improved by modification of cylinder arrangement and flywheel position in reverse sequence, equalizing the combustion gas pressure of all cylinder and installation of torsional vibration damper enlarged 30%(Je=7287Kg.m$^{2}$) and high quality balancing of generator rotor.

  • PDF

A Research on the Optimization of Turbocharging System in a Medium Speed Diesel Engine (중형 디젤엔진의 터보챠저 과급 시스템 최적화에 관한 연구)

  • Youn Wook-Hyun;Gal Sang-Hak;Ha Ji-Soo;Kim Ho-Ick;Kim Ju-Tae;Kim Ki-Doo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1138-1144
    • /
    • 2004
  • In order to improve engine performance while overcoming the weak points of Pulse and MPC(Modular Pulse Converter) turbocharging system, a new turbocharging system. "Hi-Pulse system", has been introduced and developed for medium speed diesel engine. HYUNDAI HiMSEN engines. Hi-Pulse system is to utilize not only the benefits of MPC system at higher load but also the ones of Pulse system at lower load. As for the results. the specific fuel oil consumption and NOx emission were lowered compared with the Pulse and MPC system. Performance simulation were carried out to optimize intake and exhaust timing and exhaust duct arrangement and to improve the performance of Hi-Pulse system engine.em engine.

Introduction For Gas Turbine Electric Propulsion LNGC (GAS TURBINE ELECTRIC PROPULSION LNG선 소개)

  • Yeo, Dong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.27-28
    • /
    • 2006
  • 최근 LNG 연료 시장의 호황에 힘입어 LNG선들이 점차 대형화 추세에 있고, LNG선의 추진 기관 또한 경제성, 환경 영향 등의 주어진 요구 환경에 따라 다양화 되고 있다. 기존의 Steam Turbine Propulsion 외에 Conventional 2-stroke Diesel Engine 및 Dual-fuel 4-stroke Diesel Engine of LNG선의 주 기관으로서 이미 상용화 되었고, 기술적/경제적인 이유로 일반 상선의 주기관으로서는 논외에 있었던 Gas Turbine 또한 일부 Oil Major와 Gas Turbine Maker에 의해 그 적용 가능성이 논의되고 있다. 이에 따라 LNG 선에 Gas Turbine 적용 타당성, 고려 사항 및 적용에 따른 이점과 단점 등을 고찰하였다.

  • PDF