• Title/Summary/Keyword: Diesel engines

Search Result 804, Processing Time 0.02 seconds

A Study on the Measurement Technique for Injection Rate and the Effects of the Nozzle Hole Number on Injection Characteristics (디젤 인젝터의 분사율 측정 기술과 분공수 변화가 분사특성에 미치는 영향에 관한 연구)

  • 이기형;정재우;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • Recently, many researches for the improvement of DI diesel engines have been performed to reduce the fuel consumption and exhaust emissions. Among the various factors effect on combustion and emission in Dl diesel engines, one of the most important factors is the characteristics of the fuel spray. Accordingly, the investigation on the characteristics of spray is needed to analyze the diesel combustion exactly, In this study, the measurement technique fur injection rate using the Zeuch method was developed. In addition, the effects of nozzle hole number on the spray and flame were investigated by visualization experiment.

Characteristic Analysis of a SCR System using a Metal Foam in Diesel Engines (디젤 엔진에서 금속 폼을 적용한 SCR 촉매의 특성 분석)

  • Kim, Yongrae;Choi, Kyonam
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.196-201
    • /
    • 2013
  • SCR(Selective Catalytic Reduction) is a major after-treatment solution to reduce NOx emission in recent diesel engines. In this study, a metal foam is applied as an alternative SCR substrate and tested in a commercial diesel engine to compared with a conventional ceramic SCR system. Basic engine test from ND-13 mode shows that a metal foam catalyst has lower NOx conversion efficiency than a ceramic catalyst especially over $350^{\circ}C$. A metal foam catalyst has characteristics of high exhaust gas pressure before a SCR catalyst and high heat transfer rate due to its material and structure. NOx conversion efficiency of a metal foam catalyst shows an increasing tendency along with the increase of exhaust gas temperature by $500^{\circ}C$. The effect of urea injection quantity variation is also remarkable only at high exhaust gas temperature.

Effect of Coolant Flow Passages Between Cylinder Blocks on the Cooling Performance of a Heavy-duty Diesel Engine (실린더 블록 사이의 냉각수 유입홀이 대형 디젤엔진의 냉각성능에 주는 영향)

  • Lee, Sang-Kyoo;Rhim, Dong-Ryul;Lee, Sang-Up;Kim, Min-Jung;Yoo, Seung-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.341-344
    • /
    • 2006
  • In this analytical study on the engine coolant flow of a heavy-duty diesel engine with 4 valves and linear-type 8 liter 6 cylinders, the characteristics of pressure drop and engine cooling performance with the additional coolant passages between cylinder blocks have been investigated. Since the most part of pressure drop is caused by the coolant flow passages inside a cylinder head and cylinder blocks for this type of heavy-duty diesel engines, the advantage of pressure drop is just 2.6% and the characteristics of heat transfer and the distribution of coolant velocities in the head part show little differences in case of additional coolant passages. Thus the coolant flow passages between cylinder blocks make little contribution on the cooling performance of heavy-duty diesel engines

  • PDF

A Study on the Performance and Exhaust Emissions of Agricultural Diesel Engines by Use of Rice Bran Oil as a Fuel (미강유 연료에 의한 전용 디젤기관의 성능 및 비기 배출물에 관한 연구)

  • 하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.816-826
    • /
    • 1998
  • The effects of rice bran oil on the characteristics of performance and exhaust emissions have been experimentally examined by a single cylinder four cycle direct injection water-cooled and agricultural diesel engine operating at several loads and speeds. The experiments are conducted with light oil blends of rice bran with light oil and rice bran oil as a fuel. The fuel injection timing if fixed to $22^{\circ}$ BTDC regardless of fuel type engine loads and speeds. Any oxygen is not included in light oil while the oxygen contents of 10.7% are included in rice bran oil. The lower calorific value of rice bran oil is less than light oil and the viscosity is very high compared with light oil. In pre-sent study it is found that these major differences of chemical and physical properties control the combustion parameters that affect the performance and exhaust emissions of diesel engines using a rice bran oil as fuels.

  • PDF

A Study on the Estimation of the Load Torque in a Diesel Engine (디젤기관의 부하토오크 추정에 관한 연구)

  • 김병덕;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.29-35
    • /
    • 1993
  • Recent marine propulsion diesel engines tend to become slower in speed and longer in stroke for the higher engine efficiency, and in these long stroke and slow speed engines the digital governors are highly recommended to be used. But, in the present digital governors only the feedback of the engine rpm-signal is used for the engine speed control. If the load torque of the engine can be measured or estimated and the torque feedback loop is added to the present digital governor, it is expected that the speed control performance of the digital governor will be highly improved. In this paper, a new method is proposed to estimate the load torque of the diesel engine from the measured signals of fuel oil and rpm. And it is also suggested that the Kalman filter can be used for the estimation of engine torque.

  • PDF

Technology for Reducing NOx and Soot Particulate using EGR with Water Emulsified Fuel in Diesel Engines (물혼합 연료 및 EGR의 조합에 의한 디젤기관의 질소산화물과 매연미립자 동시저감 기술에 관한 연구)

  • 박권하;박태인;김기형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 1997
  • Many research works have been carried out to investigate the factors governing the performance of diesel engine. The area of the study has been focused on reducing both of NOx and smoke because of many difficulties to reduce them simultaneously in diesel engines. One of the efforts is an application of EGR technology to reduce NOx emission, which is very effective, but increases other emissions and makes fuel economy worse. In order to solve the problem, EGR is employed with water emulsified fuel and tested in this paper. Emulsified fuel is produced by centrifugal mixer and the amount of water is controlled by water injector and pulse generator, and EGR rate is controlled with 6-step control valve. The chamber pressure, fuel consumption and emissions are measured with various values of both EGR and water mixing rate, The results show that NOx emission is reduced much rather and smoke is also reduced simultaneously.

  • PDF

A Study on the Improvement of the Speed Control Performance in a Diesel Engine (디젤기관의 속도제어성능 개선에 관한 연구)

  • 김병덕;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.33-43
    • /
    • 1993
  • Recent marine propulsion diesel engines tend to become slower in speed and longer in stroke for the higher engine efficiency, and in these long stroke and slow speed engines the digital governors are highly recommended to be used. But, in the present digital governors only the feedback of the engine rpm-signal is used for the engine speed control and it does not work so effectively when the load variation is large. In this paper, a new method is proposed to improve the speed control performance in a diesel engine, by adding the torque feedback loop to the present digital governor which uses the rpm feedback PID controller only. And also a method is proposed to adjust the parameters of the PID controller optimally.

  • PDF

TRANSIENT FLAMELET MODELING FOR COMBUSTION PROCESSES OF HSDI DIESEL ENGINES

  • Kim, H.J.;Kang, S.M.;Kim, Y.M.;Lee, J.H.;Lee, J.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.129-137
    • /
    • 2006
  • The representative interactive flamelet(RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the HSDI diesel engine. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the eulerian particle flamelet model using the multiple flamelets has been employed. The vaporization effects on turbulence-chemistry interaction are included in the present RIF procedure. the results of numerical modeling using the rif concept are compared with experimental data and with numerical results of the widely-used ad-hoc combustion model. Numerical results indicate that the rif approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay characteristics as well as the pollutant formation in the HSDI diesel engines.

A Study on the Calcuation of NO Formation in Cylinder for Diesel Engines (디젤기관의 연소실내 NO 생성농도 예측에 관한 연구)

  • 남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.543-551
    • /
    • 1999
  • Diesel engine is a major source of the air pollution. In general the concentrations of these pollu-tants in diesel engine exhaust differ from values calculated assuming chemical equibrium. Thus the detailed chemical mechanisms by which these pollutions form and the kinetic of these process-es are important in determining emission levels. In this study the computer program has been developed to calculate the required thermodynam-ic properties of combustion products(10 spacies) for both equilibrium and non-equilibrium in cylin-der for diesel engines. Nitric oxide emissions are calculated by using the extended Zeldovich Kinet-ic mechanism with a steady state assumption for the N concentration and equilibrium values used for H, O, $O_2$ and OH concentrations. By the results it is confirmed that developed simulations program with the NO prediction model is validated against residual mass fraction combustion index of Wiebe's functions pre-mixed com-bustion ration fuel injection timing.

  • PDF

Numerical Studies on the Combustion Characteristics and Pollutant Formation for the DME Fueled Diesel Engine (DME 연료 디젤엔진의 연소 및 공해물질 배출 특성 해석)

  • Yu, Yong-Wook;Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure diesel engines. In order to realistically simulate the dimethyl ether (DME) fueled diesel engine, the high pressure vaporization model is utilized and the interaction between turbulence and chemistry is treated by employing the Representative Interactive Flamelet (RIF) model. The detailed chemisty consisted of 336 elementary reaction steps and 78 species is used for DME/air reaction. Numerical results indicate that the RIF model with high pressure vaporization model successfully predicts the essential feature of the combustion processes and pollutants formations in the DME fueled diesel engines.

  • PDF