• Title/Summary/Keyword: Diesel combustion

Search Result 968, Processing Time 0.024 seconds

Identification of Atmospheric PM10 Sources and Estimating Their Contributions to the Yongin-Suwon Bordering Area by Using PMF (PMF모델을 이용한 용인.수원 경계지역에서 PM10 오염원의 확인과 상대적 기여도의 추정)

  • Lee, Hyung-Woo;Lee, Tae-Jung;Yang, Sung-Su;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.439-454
    • /
    • 2008
  • The purpose of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions to the study area, based on the analysis of the $PM_{10}$ mass concentration and the associated inorganic elements, ions, and total carbon. The contribution of $PM_{10}$ sources was estimated by applying a receptor method because identifying air emission sources were effective way to control the ambient air quality. $PM_{10}$ particles were collected from May to November 2007 in the Yongin-Suwon bordering area. $PM_{10}$ samples were collected on quartz filters by a $PM_{10}$ high-volume air sampler. The inorganic elements (Al, Mn, V, Cr, Fe, Ni, Cu, Zn, Cd, Pb, Si, Ba, Ti and Ag) were analyzed by an ICP-AES after proper pre-treatments of each sample. The ionic components of these $PM_{10}$ samples ($Cl^_$, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $NH_4^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$) were analyzed by an IC. The carbon components (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) were also analyzed by DRI/OGC analyzer. Source apportionment of $PM_{10}$ was performed using a positive matrix factorization (PMF) model. After performing PMF modeling, a total of 8 sources were identified and their contribution were estimated. Contributions from each emission source were as follows: 13.8% from oil combustion and industrial related source, 25.4% from soil source, 22.1% from secondary sulfate, 12.3% from secondary nitrate, 17.7% from auto emission including diesel (12.1%) and gasoline (5.6%), 3.1% from waste incineration and 5.6% from Na-rich source. This study provides information on the major sources affecting air quality in the receptor site, and therefore it will help us maintain and manage the ambient air quality in the Yongin-Suwon bordering area by establishing reliable control strategies for the related sources.

Cognitive Perception of an Eco-friendly Public Transportation : Using Principal Component Analysis (친환경 대중교통 수단에 대한 인지적 특성 비교 분석 : 주성분분석을 활용하여)

  • Kwon, Yeongmin;Kim, Suji;Byun, Jihye
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.1
    • /
    • pp.71-82
    • /
    • 2020
  • The existing transportation system, which is based on internal combustion engines, is rapidly being converted to electrification. Thus, eco-friendly public transportation with high transportation efficiency will continue to spread throughout the market in the near future. The purpose of this study is to compare and analyze the cognitive characteristics of passengers redgarding the technical and social factors of various public transportation means to help a successful introduction of eco-friendly public transit. Through a survey questionnaire (N=485), seven factors of seven transportation modes were evaluated and analyzed using principal component analysis. As a result, it is confirmed that potential passengers have high expectations for the eco-friendliness and city image of the eco-friendly buses. Also, it is confirmed that eco-friendly buses are superior in cleanliness and ride comfort than diesel buses. Given the study's results, this study identifies the cognitive characteristics of passengers regarding eco-friendly public transportation. We hope that these results will be used as basic information for image positioning and improved service with the use of eco-friendly transportation.

Characteristics of Fuel Mixing and Evaporation Based on Impingement Plate Shape in a Denitrification NOx System with a Secondary Injection Unit (2차 분사시스템을 갖는 De-NOx 시스템의 충돌판 형상에 따른 연료의 혼합 및 증발 특성 향상을 위한 연구)

  • Park, Sangki;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.884-891
    • /
    • 2016
  • A secondary injection system in a diesel engine has benefits: it can be controlled independently without interrupting engine control, it can be adapted to various layouts for exhaust systems, and it pose no reductant dilution problems compared to post injection systems in the combustion chamber or other supplemental reductant injections. In a secondary injection system, the efficiency of the catalyst depends on the method of reducing the supply. The reductant needs to be maintained and optimized with constant pressure, the positions and angles of injector is a very important factor. The concentration and amount of reductant can be changed by adjusting secondary injection conditions. However, secondary injection is highly dependent upon the type of injector, injection pressure, atomization, spray technology, etc. Therefore, it is necessary to establish injection conditions the spray characteristics must be well-understood, such as spray penetration, sauter mean diameter, spray angle, injection quantity, etc. Uniform distribution of the reductant corresponding to the maximum NOx reduction in the DeNOx catalyst system must also assured. With this goal in mind, the spray characteristics and impingement plate types of a secondary injector were analyzed using visualization and digital image processing techniques.

Estimation of Benzene Emissions from Mobile Sources in Korea (국내 이동오염원에서 발생되는 벤젠 배출량 산정)

  • Lee, Ju-Hyoung;Cha, Jun-Seok;Hong, Ji-Hyung;Jung, Dong-Il;Kim, Ji-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.72-82
    • /
    • 2008
  • Benzene is a very harmful and toxic compound known as human carcinogen by all routes of exposure. Owing to the risky feature of benzene, several countries such as Japan, UK and EU have established the ambient air quality standard and protect from that risk of it. Korea also has designated it as one of the criteria air pollutants and established the concentration limit ($5\;{\mu}g/m^3$) in the air and is going to apply the standard from 2010. Benzene is emitted from various sources such as combustion plants, production processes, waste treatment facilities and also automobiles. Mobile source is known as one of the major emission sources of benzene. In this study, we estimated the domestic emissions of benzene from mobile source and compared the results with those of advanced countries. Mobile source was divided into 2 categories, Le., on-road source and non-road source. The total emissions of benzene from mobile source were estimated as 3,106 tons/yr and 1,612 tons/yr was emitted from on-road source and 1,494 tons/yr was from non-road source. Emission ratio of benzene from on-road source showed that 80.0% was from passenger cars, 10.1% was from taxis, 7.2% was from light-duty vehicles, 2.5% was from heavy-duty vehicles and 0.2% was from buses. In the case of non-road source, the distribution showed that 66.3% was from construction machineries, 14.5% was from locomotives, 11.7% was from ships, 7.1% was from agriculture equipments and 0.5% was from aircrafts. The cold-start emissions were estimated as 942 tons/yr and this value was almost 1.5 times greater than that for hot engine emissions (608 tons/yr). In addition, the fuel-based distribution was 65.9%, 31.1% and 2.8% from gasoline, LPG and diesel vehicles, respectively. The emission ratio from mobile source occupied 65% and 30% of total benzene emissions in USA and UK, respectively. In case of Korea, the emission ratio of benzene from mobile source occupied 29% (15% from on-road source, 14% from non-road source) which showed similar value with UK.

A Study on the Application of Domestic ferry to a Battery Propulsion Ship connected with Photovoltaic System (태양광 발전시스템이 연계된 배터리 전기추진선박의 국내 유람선 적용에 관한 연구)

  • Hwang, Jun-Young;Jeon, Cheol-Hwan;Jeon, Hyeon-Min;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.945-952
    • /
    • 2019
  • The International Maritime Organization (IMO) adopted the International Convention on the Control of Ships' Air Pollutants and Discharge as it became interested in environmental issues such as global warming and air pollution. In addition, a special bill on the improvement of air quality, including in port areas, has recently been enacted in Korea to reduce the amount of fine dust generated. As part of such fine dust reduction measures, feasibility studies have been underway on converting diesel engines into battery electric propulsion systems that do not cause fine dust and emissions. Since the battery electric propulsion system can easily utilize renewable energy sources, and does not generate exhaust gas due to combustion of fuel, small coastal ferries with battery electric propulsion systems that use renewable energy have been operating in Europe and the U.S. for several years. However, they have not been introduced in Korea. Therefore, in this study, we selected small coastal ferries in Korea as target ferries, and performed simulations to study the applicability of electric propulsion with batteries linked to solar power systems. Based on the results, we want to confirm the applicability of battery electric propulsion.

A Study on the Analysis of Polycyclic Aromatic Hydrocarbons in Air (대기중 다환 방향족 탄화수소류의 분석에 관한 연구)

  • Pyo, Hee-Soo;Hong, Jee-Eon;Lee, Kang-Jin;Park, Song-Ja;Lee, Won
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.453-465
    • /
    • 2000
  • Polycyclic aromatic hydrocarbons (PAHs) were produced by thermoreaction (incompletely combustion) of organic compounds such as fuel, gasoline, diesel etc, and were known the strong carcinogenic compounds. In our country, a study for health risk assessment of PAHs in air were needed according to rapidly increasing of motor vehicle and progressing to industrial country. In this study, concentrations of PAHs in 263 air samples of fourteen sites-Seoul, Pusan, etc-according to four times sampling for one year are measured by GC/MSD for basic research for health risk assessment. As the result, 14 PAHs are detected in all samples and annual average concentration of total PAHs was $28.72ng/m^3$ and highest average concentration of total PARs was $47.76ng/m^3$ in winter season. The concentrations of total PAHs are proportioned to amount of extracted organic material (EOM). The average concentration of total PAHs in EOM was 0.28%.

  • PDF

Evaluation of Characteristics of Welding Zones Welded with Inconel 718 Filler Metal to Piston Crown Forged Material (피스톤 크라운용 단강에 인코넬 718 용접재료로 용접된 용접부의 특성 평가)

  • Lee, Sung-Yul;Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.334-340
    • /
    • 2016
  • The combustion chamber of a diesel engine is often exposed to a more serious wear and corrosion environment than other parts of the engine because its temperature increases as a result of using heavy oil of low quality. Therefore, repair and built-up welding methods must be performed on worn or corroded parts of the piston crown, exhaust valve, etc. from an economical point of view. In this study, Inconel 718 filler metal was used in repair welding on the groove of a forged steel specimen for a piston crown, along with built-up welding on the surface of another forged steel specimen. Then, the corrosion characteristics of the weld metal zone for the repair welding and the deposited metal zone for the built-up welding were investigated using electrochemical methods in a 35% H2SO4 solution. The deposited metal zone indicated better corrosion resistance than the weld metal zone, showing a nobler corrosion potential, higher impedance, and smaller corrosion current density. It is considered that metal elements with good corrosion resistance were generally included in the filler metal, and these elements were also greatly involved in the deposited meta by built-up welding, whereas the weld metal consisted of metal elements mixed with both the filler metal and base metal elements because of the molten pool produced by the repair welding. Finally, it is considered that the hardness of the weld metal was increased by the repair welding, whereas the built-up welding improved the corrosion resistance of the deposited metal.

Ag-Loaded LaSrCoFeO3 Perovskite Nano-Fibrous Web for Effective Soot Oxidation (Ag 담지된 LaSrCoFeO3 섬유상 perovskite 촉매의 탄소 입자상 물질의 산화반응)

  • Lee, Chanmin;Jeon, Yukwon;Hwang, Ho Jung;Ji, Yunseong;Kwon, Ohchan;Jeon, Ok Sung;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.584-588
    • /
    • 2019
  • The catalytic combustion of particulate matter (PM) is one of the key technologies to meet emission standards of diesel engine system. Therefore, we herein suggest Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. They were produced by the electrospinning method. FE-SEM, EDS mapping, XRD, XPS were studied to investigate the crystal and morphological structures of loaded Ag particles and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst. Following the catalytic soot oxidation, we found that the Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskiteweb catalyst showed the higher catalytic activities (e.g., $T_{50}=490^{\circ}C$) than the only $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst (e.g., $T_{50}=586^{\circ}C$). Thus, this finding suggests that Ag loaded $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ perovskite web catalyst can be a promising candidate for enhancing the soot oxidation.