• Title/Summary/Keyword: Diesel Vehicles

Search Result 370, Processing Time 0.027 seconds

Finite Element Analysis and Formability Evaluation for Dimple Forming with Thin Sheet Metal (박판 딤플 성형을 위한 유한요소해석 및 성형성 평가)

  • Heo, Seong-Chan;Seo, Young-Ho;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.621-628
    • /
    • 2007
  • Nowadays, Exhaust Gas Recirculation(EGR) Cooler is one of the most favorite systems for reducing the generation amount of $NO_x$ and other particle materials from vehicles burning diesel as fuel. Efficiency of the system is mainly dependent on its heat transfer efficiency and this ability is affected by net heat transferring area of the system. For that reason, several types of heat transfer tube such as dimple, wrinkle and spiral types that have large net area are used. However, it is difficult to manufacture the rectangular tube with dimpled type structure because it experiences too much strain around the rectangular tube surface during the forming process. For that reason, in this study, numerical simulation for forming process of non-symmetric dimple shape on a thin sheet metal was carried out. Furthermore, theoretical forming limit curves(forming limit diagram, forming limit stress diagram) were proposed as criteria of formability evaluation. From the results of finite element simulation in view of stress and strain distribution, it is found that the designed process has robustness and feasibility to safely manufacture the dimpled rectangular tube.

A study on the Noise Reduction of Vane-type Vacuum pump Mounted on Alternator using Design of Experiments (실험계획법을 이용한 교류발전기 부착형 진공펌프의 소음저감에 관한 연구)

  • Park, Soon-Sik;Kim, Yong-Chan;Kim, Byoung-Duk
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.234-239
    • /
    • 2007
  • Recently one of the automobile customer's greatest concerns is quietness in a vehicle along with various functional requirements such as comfort, stability, mobility etc. Therefore car makers place more weight on vehicle noise. Especially, in the case of diesel engine, as the noise level of engine becomes more silent by the development of engineering technology. The noise of alternator with vacuum pump has been able to be noticed enough becoming an issue on vehicles. In this study vacuum pump noise on alternator was identified andclassified into five types. DOE was applied to induce the statistical analysis result to reduce the vacuum pump noise. It was done by subjective listening. Design and statistical analysis are done with Minitab software. This work provides dominant elements of vacuum pump noise on alternator and can be the basis of furture studies.

A HYDROGEN FUELLED V-8 ENGINE FOR CITY-BUS APPLICATION

  • Sierens, R.;Verhelst, S.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • Hydrogen is seen as one of the important energy vectors of the next century. Hydrogen as a renewable energy source, provides the potential for a sustainable development particularly in the transportation sector. Hydrogen driven vehicles reduce both local as well as global emissions. The laboratory of transporttechnology (University of Gent) converted a GM/Crusader V-8 engine for hydrogen use. Once the engine is optimised, it will be built in a low-floor midsize hydrogen city bus for public demonstration. For a complete control of the combustion process and to increase the resistance to backfire (explosion of the air-fuel mixture in the inlet manifold), a sequential timed multipoint injection of hydrogen and an electronic management system is chosen. The results as a function of the engine parameters (ignition timing. injection timing and duration, injection pressure) we given. Special focus is given to topics related to the use of hydrogen as a fuel: ignition characteristics (importance of electrode distance), quality of the lubricating oil (crankcase gases with high contents of hydrogen), oxygen sensors (very lean operating conditions), noise reduction (configuration and length of inlet pipes). The advantages and disadvantages of a power regulation only by the air to fuel ratio (as for diesel engines) against a throttle regulation (normal gasoline or gas regulation) are examined. Finally the goals of the development of the engine are reached: power output of 90 kW, torque of 300 Nm, extremely low emission levels and backfire-safe operation.

  • PDF

A Numerical Study on the Flow Characteristics in the Catalytic Muffler with Different Inlet and Outlet Configurations (입구 및 출구 형상 변화에 따른 촉매 삽입형 머플러 내부의 유동 해석)

  • An, Tae Hyun;Lee, Seung Yeop;Park, Yun Beom;Kim, Man Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Lack of the space in many diesel vehicles make it difficult to design and install the catalytic muffler to reduce emissions. For this reason, inlet part of the catalytic muffler is made of L-type which has lower flow uniformity than conventional I-type, and catalytic muffler has complex internal structure by various insertions, which affect the flow uniformity and pressure drop of the systems. In this work, the flow characteristics such as flow uniformity and pressure drop have been numerically investigated by changing such various geometries as inlet shape, porosity, and outlet shape inside the muffler with the three-dimensional turbulent incompressible flow solver. Total 4 different cases are considered in order to find optimal configurations of the catalytic muffler in view of high flow uniformity and low pressure drop. The results show that Case 2 which has no induction cone and outlet perforated pipe has higher uniformity index and lower pressure drop than others considered in this work.

Study on Heat Exchanger Efficiency of EGR Cooler with Dimpled Rectangular Tube Shape for Application of Diesel Vehicles (디젤 자동차용 딤플 사각 튜브형 EGR Cooler 의 열교환기 효율에 관한 연구)

  • Seo, Young-Ho;Heo, Seong-Chan;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.769-775
    • /
    • 2008
  • In this study, the investigations on the dimpled type Exhaust Gas Recirculation (EGR) cooler have been focused on the high heat exchanger efficiency. To overcome low heat exchanger efficiency of general EGR cooler, the dimpled type EGR cooler was developed. It was ensured the improvement of the performance of the dimpled type EGR cooler related to the heat exchange based on a series of the experiment. These results were caused by the increase of thermal surface area in accordance with the dimple's one. The estimation model of the heat exchanger efficiency using the Effectiveness-NTU method was also developed in order to verify the validity of experimental result. Also, the program for the estimation of the heat exchanger efficiency on the EGR cooler with regard to the dimpled tube shape was developed. Resultantly, it was confirmed that the dimpled type EGR cooler could be served better performance than the conventional one in view of the heat exchanger efficiency.

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

Icing Characteristics of Liquid Phase LPG Injection According to Butane and Propane Mixing Rates (부탄과 프로판 혼합비율에 따른 액상 LPG 분사시 Icing 특성)

  • Kim, Yung-Jin;Cho, Won-Joon;Lee, Ki-Hyung
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.146-151
    • /
    • 2011
  • LPG(Liquified Petroleum Gas) fuel for vehicles has lots of advantages such as low emission level, cheaper fuel cost and enough infrastructure. Therefore it arouses interest as an alternative engine to reduce emission of diesel engines. Especially MPI(Multi Point Injection) type LPLi(Liquid Phase LPG injection) system could have overcome the disadvantages of mixer types such as low engine performance, decreased charging efficiency and cold starting difficulty. However ice formation on the nozzle tip and intake port due to the freezing of moisture around the components is often observed in LPLi systems. This icing phenomenon is the direct cause of unstable engine combustion, resulting in engine emissions. Therefore in this research, a spray visualization test for LPG injection was carried out to obtain the basic information of an LPLi injector, then the effects of butane and propane mixing rates on ice formation at the intake port and nozzle tip was investigated. As a result, the icing characteristics of them showed contrary results according to the mixing rates.

Application of Intake Throttling for Improving Regeneration Characteristics of an Electrical Heated DPE System (소형디젤엔진용 전기히터방식 매연여과장치의 재생특성 향상을 위한 흡기드로틀링 적용연구)

  • Kim Hongsuk;Han Hanseung;Kim Jinhyun;Cho Gyubaek;Jeong Youngil;Hwang Jae-Won;Han Sangmyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.77-83
    • /
    • 2005
  • Application of an electric heater is one of attractive methods for active regeneration in DPF systems, but its application has been limited by the capacity of electric power available in vehicles. This study was focused on intake throttling to reduce electrical energy required in the electrical heated DPF system. As results, this study showed the decrease of $30\~50\%$ of intake air mass flow rate and the increase of $20\~60^{\circ}C$ of exhaust gas temperature by the proper control of intake throttling. These intake throttling effects was helpful for regenerable temperature achievement.

Direction of Arrival Estimation under Aliasing Conditions (앨리아싱 조건에서의 광대역 음향신호의 방위각 추정)

  • 윤병우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • It is difficult to detect and to track the moving targets like tanks and diesel vehicles due to the variety of terrain and moving of targets. It is possible to be happened the aliasing conditions as the difficulty of antenna deployment in the complex environment like the battle fields. In this paper, we study the problem of detecting and tracking of moving targets which are emitting wideband signals under severe spatial aliasing conditions because of the sparse arrays. We developed a direction of arrival(DOA) estimation algorithm based on subband MUSIC(Multiple Signal Classification) method which produces high-resolution estimation. In this algorithm, the true bearings are invariant regardless of changes of frequency bands while the aliased false bearings vary. As a result, the proposed algorithm overcomes the aliasing effects and improves the localization performance in sparse passive arrays.

  • PDF

Improvement of Soot Probe Efficiency for Automotive Emission Measurement (자동차 배기가스 측정을 위한 매연프로브 효율 개선에 관한 연구)

  • Chae, Il-Seok;Kim, Sang-Yu;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.74-81
    • /
    • 2019
  • Cars are inspected in the transport sector for their ability to achieve the greenhouse gas reduction targets. A vehicle (automobile) inspection broadly consists of regular and total checks, and both the safety level and the amount of exhaust gas are checked simultaneously during a vehicle inspection. This study deals with the efficiency of a soot probe to measure soot emissions from diesel vehicles. When the vehicle exhaust gas measurement is performed, there may be a difference between the exhaust gas temperature and the soot suction amount because of the different shape and angle of the exhaust port for each vehicle type. This may result in some incidents where the correct inspection nonconforming vehicle is not selected. Therefore, in this study, the shape of the probe was improved to increase the soot measurement efficiency under the condition of the exhaust pipe angle change.