• 제목/요약/키워드: Diesel Particulate Filter

검색결과 167건 처리시간 0.022초

DPF 성능 평가를 위한 Dump Combustor의 활용 (The Application of Dump Combustor for Evaluation of DPF(Diesel Particulate Filter) System)

  • 남연우;이원남;오광철;이춘범
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.98-103
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Temperature, gas compostion and flow rate of exhaust gas are important parameters in DPF evaluation, especially regeneration process. Engine dynamometer and degment tester are generally used in DPF evaluation so far. But these test method couldn't reveal the effect of various parameters on real DPF, such as O2 concentration, amount of soot and exhaust gas temperature. This research has studied the possibility using dump combustor that used to take an approach lean premixed combustion in gas turbine for a DPF power and optimized. It is possible that utilize the system as DOC (Diesel Oxidation Catalyst) and SCR(Selective Catalytic Reduction) assessments test as well as DPF evaluation

  • PDF

선박용 고속 디젤엔진에 적용한 디젤미립자 필터의 측정방법에 따른 입자상물질 저감효율 비교 연구 (Comparison of removal efficiency of diesel particulate filter with different measurement methods in a high-speed marine diesel engine)

  • 이익성;고동균;문건필;남연우;김신한;오영택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.362-367
    • /
    • 2017
  • 본 연구에서는 입자상물질 저감을 위해 개발한 디젤미립자 필터를 선박용 고속 디젤엔진에 적용하여 측정방법에 따른 저감효율을 비교 분석하였다. 시험에 사용된 엔진은 최고출력 403 kW의 4행정 기계식 선박용 고속 디젤엔진이며, 선박 엔진의 부하와 회전속도 제어를 위해 AC 동력계를 사용하였다. 선박 엔진 시험주기인 E3 cycle의 네 운전조건에서 저감효율을 측정하였으며, 측정방법으로는 입자상물질 및 soot의 저감특성을 살펴보기 위해 분류희석 방법과 광흡수법이 적용된 계측기를 각각 이용하였다. 디젤미립자 필터 적용에 따른 저감효율 측정 결과, 엔진허용 배압을 충족함과 동시에 입자상물질의 경우 76 ~ 91 %, soot(${\approx}$블랙카본)은 90 %이상 확인할 수 있었다. 이 결과로부터, 선박용 디젤엔진에서 배출되는 입자상물질 및 soot 저감기술로 디젤미립자 필터 적용 가능성을 확인할 수 있었다. 또한, 측정방법별 저감효율이 상이한 결과로부터 측정방법의 단일화 필요성을 확인할 수 있었다.

다공성 세라믹 펠렛을 포집재로 사용하느 매연여과장치의 배압 및 재생 특성에 관한 연구 (A Study on the Characteristics of Pressure Drop and Regeneration of a Porous Seramic Pellet Filter for Diesel Particulate Trap)

  • 김홍석;조규백;김진현;정용일;정인수;박재구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.21-26
    • /
    • 2003
  • Diesel particulate trap is a core technology for the reduction of PM from diesel vehicles This study presents the features and the characteristics of DPF system when using pellet type filters. In comparison with wall-flow filter, the pellet filter has the advantages of cracking free during regeneration and shape flexibility. Experiments are conducted in a test bench simulated as diesel engine exhaust condition. Pressure drop and particle loading rate was compared by using two pellet filters having the porosity of 70% and 0%. Also its regeneration was tested.

  • PDF

세라믹 섬유필터를 이용한 디젤 입자상물질 배출저감에 관한 기초연구 (A Study on the Exhaust Reduction of Diesel Particulates Using Ceramic Fiber Filters)

  • 주용남;홍민선;문수호;이동섭;임우택
    • 한국대기환경학회지
    • /
    • 제19권3호
    • /
    • pp.297-306
    • /
    • 2003
  • Works were focused on back pressure characteristics of ceramic fiber filter on DPF (Diesel Particulate Filter) system and experiments were performed to select appropriate filter which can filter particulates. Filters were installed on metal -support tube which has openings for exhaust gas flow. Ceramic fiber filters with high specific surface area and adequate high temperature strength are commercially available for filtration of diesel particulates and in -situ hot regeneration. Thus, ceramic blanket and ceramic board which are used as insulating media were applied to filter and filtration apparatus was installed on exhaust gas line connected to 2.0 L diesel engine. Alternating filter structure to adapt DPF system, collection efficiency test of diesel particulates was measured. In case of ceramic blanket, pressure drop was low, caused by the destruction of soft structures. Also, particulate collection efficiency was decreased depending on loading time. In case of ceramic board, structure design was altered to reduce back pressure on DPF system. Structure design was altered to induce Z-flow by making 10 mm and 5 mm holes on the surface of media. Alteration of 5 mm hole showed that media have low back pressure but particulate collection efficiency was 77%, while 10 mm hole showed that of 90%.

경유차 입자상물질 저감필터(DPF) 재생용 전기수력학적 연료 후분사 노즐의 미립화 특성 평가 및 수치해석을 이용한 액적 입경별 연소 특성 평가 (Performance Evaluation of an Electrohydrodynamic Spray Nozzle for Regeneration of Particulate Matter on Diesel Particulate Filter)

  • 정성훈;박성은;김민정;조형제;황정호
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.55-68
    • /
    • 2012
  • Particulate matters (PM) which are collected into a diesel particulate filter (DPF) system have to be periodically removed by thermal oxidation. In this report, we fabricated an electrohydrodynamic-assisted pressure-swirl nozzle to spray diesel droplets finer. Atomization performance of the nozzle was evaluated using both experimental and numerical methods. Two types of nozzle designs, the charge induction type and the charge injection type, were tested. While the former generated diesel droplets of $400\;{\mu}m$ at an applied electric potential over 10 kV, the latter presented the droplets smaller than $23\;{\mu}m$ at an applied electric potential of 8 kV. The numerical simulation results showed that the reduced size of droplets caused higher evaporation of droplets and therefore the increased temperature, which would eventually increase the regeneration performance of the DPF system.

DPF 재생을 위한 버너-산화촉매 복합 적용 (Combined Application of Burner and Oxidation Catalyst for Diesel Particulate Filter Regeneration)

  • 심성훈;정상현
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.25-31
    • /
    • 2010
  • Combined technique of burner and DOC has been used for regeneration of Diesel Particulate Filter. Experiments has been performed to increase the temperature of engine exhaust gas to burn the collected soot in DPF at all conditions of operation of 3 liter diesel engine. Ignition temperature of soot can be successfully obtained by heats of burner flame and residual fuel oxidation at diesel oxidation catalyst even in the condition of oxygen deficiency. It is found that the load of air compressor and heat loss can be reduced to the level of practical application. It is also found that CO and THC emissions are not increase by additional combustion of regeneration burner.

A Particulate Matter Sensor with Groove Electrode for Real-Time Diesel Engine On-Board Diagnostics

  • Kim, S.;Kim, Y.;Lee, J.;Lim, S.;Min, K.;Chun, K.
    • 센서학회지
    • /
    • 제22권3호
    • /
    • pp.191-196
    • /
    • 2013
  • A particulate matter sensor fabricated by MEMS process is proposed. It is developed to accommodate Euro6 on-board diagnostics regulation for diesel automobile. In the regulation, emission of diesel particulate matter is restricted to 9 mg/km. Particulate matter sensor is designed to use induced charges by charged particulate matter. To increase sensitivity of the sensor, groove is formed on sensor surface because wider surface area generates more induced charges. Sensitivity of the sensor is measured 10.6 mV/(mg/km) and the sensor shows good linearity up to 15.7 mg/km. Also its minimum detectable range is about 0.25 mg/km. It is suitable to detect failure of a diesel particulate filter which should filter particulate matter more than 9 mg/km. For removing accumulated particulate matter on the sensor which can disturb normal operation, platinum heater is designed on the backside of the sensor. The developed sensor can sense very low amount of particulate matter from exhaust gas in real-time with good linearity.

매연여과장치 재생을 위한 커먼레일 디젤엔진의 연소 최적화에 관한 연구 (A Study on the Combustion Optimization of a Common Rail Direct Injection Diesel Engine for Regeneration of the Diesel Particulate Filter)

  • 강중훈;김만영;윤금중
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.167-173
    • /
    • 2005
  • Thermal regeneration means burning-off and cleaning-up the particulate matters piled up in DPF(diesel particulate filter), and it requires both high temperature $(550\~600^{\circ}C)$ and appropriate concentration of oxygen at DPF entrance. However, it is not easy to satisfy such conditions because of the low temperature window of the HSDI(high speed direct injection) diesel engine(approximately $200\~350^{\circ}C$ at cycle). Therefore, this study is focused on the method to raise temperature using the trade-off relation between temperature, oxygen concentration, and the influence of many parameters of common rail injection system including post injection. After performing an optimal mapping of the common rail parameters for regeneration mode, the actual cleaning process during regeneration mode is investigated and evaluated the availability of the regeneration mode mapping through regenerating soot trapped in the DPF.

디젤기관에서 전기 히터 재생 여과 트랩의 특성에 관한 연구 (A Study on Characteristics of Electric Heater Regeneration Filter Trap in Diesel Engine)

  • 류규현;박만재
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.10-15
    • /
    • 2001
  • Urgent increasing of the vehicles influence air pollution and the damage of the plants and animals. Particularly, exhaust-ing particulate of diesel vehicles give serious effect to human life. Therefore, this study aim to reduce amount of particulate and to contribute developing after-treatment in diesel engine. Through the experimental and theoretical study about charac-teristics of the electric heat regeneration, various results are obtained.

  • PDF

분할형 전기히터가 장착된 디젤 매연 필터 내의 온도분포에 관한 연구 (Study on Temperature Distributions in a Diesel Particulate Filter Equipped with Partitioned Electric Heaters)

  • 박성천;이충훈;이수룡
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.67-73
    • /
    • 2010
  • The temperature distribution of diesel particulate filter with five partitioned electric heaters is numerically analyzed to investigate the condition of regenerating ceramic filter. The commercial code STAR-$CCM+^{(R)}$ is utilized to simulate multi-dimensional steady hot air flow in DPF. In order to verify the computational results, thermocouples are used to measure the temperature distribution in DPF. Computational results agree well with experimental ones. The results show that the maximum temperature in DPF is lowered as the mass flow rate of exhaust gas increases, which means that the more power in heater will be necessary as the engine speed increases. Compared with heater placed at center, heater at circumference has the higher maximum temperature in DPF. The maldistribution of flow field in front of heater has the main influence on the temperature distribution in DPF.