• Title/Summary/Keyword: Dielectric-Barrier-Discharge Plasma

Search Result 204, Processing Time 0.023 seconds

Evaluation of Acceptor Binding Energy of Nitrogen-Doped Zinc Oxide Thin Films Grown by Dielectric Barrier Discharge in Pulsed Laser Deposition

  • Lee, Deuk-Hee;Chun, Yoon-Soo;Lee, Sang-Yeol;Kim, Sang-Sig
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.200-203
    • /
    • 2011
  • In this research, nitrogen (N)-doped zinc oxide (ZnO) thin films have been grown on a sapphire substrate by dielectric barrier discharge (DBD) in pulsed laser deposition (PLD). DBD has been used as an effective way for massive in-situ generation of N-plasma under conventional PLD process conditions. Low-temperature photoluminescence spectra of N-doped ZnO thin films provided near-band-edge emission after a thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound excitation peak ($A^{\circ}X$) that indicated acceptor doping of ZnO with N. The acceptor binding energy of the N acceptor was estimated to be approximately 145 MeV based on the results of temperature-dependent photoluminescence (PL) measurements.

Anti-corrosion Properties of SiOxCy(-H) thin Films Synthesized and Oxidized by Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전으로 합성 및 산화 처리된 SiOxCy(-H) 박막의 부식방지 특성)

  • Kim, Gi-Taek;Kim, Yoon Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.201-206
    • /
    • 2020
  • A SiOxCy(-H) thin film was synthesized by atmospheric pressure dielectric barrier discharge(APDBD), and a SiO2-like layer was formed on the surface of the film by oxidation treatment using oxygen plasma. Hexamethylcyclotrisiloxane was used as a precursor for the SiOxCy(-H) synthesis, and He gas was used for stabilizing APDBD. Oxygen permeability was evaluated by forming an oxidized SiOxCy(-H) thin film on a PET film. When the single-layer oxidized SiOxCy(-H) film was coated on the PET, the oxygen gas permeability decreased by 46% compared with bare PET. In case of three-layer oxidized SiOxCy(-H) film, the oxygen gas permeability decreased by 73%. The oxygen permeability was affected by the thickness of the SiO2-like layer formed by oxidation treatment rather than the thickness of the SiOxCy(-H) film. The excellent corrosion resistance was demonstrated by coating an oxidized SiOxCy(-H) thin film on the silver-coated aluminum PCB for light emitting diode (LED).

NO Removal Characteristics in $N_2$ for a Dielectric Barrier Discharge Reactor with the Variation of a Discharge Gap (유전체 장벽 방전 반응기에서 방전 간극의 변화에 따른 질소 분위기하의 NO 제거 특성)

  • 차민석;이재옥;신완호;송영훈;김석준
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.407-408
    • /
    • 2000
  • 유전체 장벽 방전 반응기 (Dielectric Barrier Discharge (DBD) Reactor)를 이용한 비열 플라즈마(Non-thermal plasma) 공정에서 NO 제거 특성을 실험적으로 연구하였다. 질소 분위기에서 전자에 의한 NO 의 제거는 $N_2$ + e $\longrightarrow$ N + N + e 반응에 의한 질소의 전자충돌해리 (electron-impact dissociation)와 이 반응에 의하여 생성된 질소원자에 의한 NO 의 환원반응 N + NO $\longrightarrow$ $N_2$ + O 으로 설명될 수 있으며, 이로 인하여 $O_2$$H_2O$ 의 첨가에 따른 부산물(O, $O_3$, OH 등)에 의한 산화반응이 주로 일어나는 경우 (XO + NO $\longrightarrow$ X + NO$_2$) 와는 달리 NO 제거에 소모된 에너지를 평가하기에 용이한 장점이 있다(Penetrante et al., 1995). (중략)

  • PDF

Inactivation of Microorganisms in Sewage Using a Pilot Plasma Reactor (Pilot 플라즈마 반응기를 이용한 하수 중 미생물의 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.289-299
    • /
    • 2013
  • Objectives: For the field application of the dielectric barrier discharge plasma reactor, scale-up of the plasma reactor is needed. This study investigated the possibility of inactivation of microorganisms in sewage using pilot multi-plasma reactor. We also considered the possibility of degradation of total organic carbon (TOC) and nonbiodegradable matter ($UV_{254}$) in sewage. Methods: The pilot plasma reactor consists of plasma reactor with three plasma modules (discharge electrode and quartz dielectric tube), liquid-gas mixer, high voltage transformers, gas supply equipment and a liquid circulation system. In order to determine the operating conditions of the pilot plasma reactor, we performed experiments on the operation parameters such as gas and liquid flow rate and electric discharge voltage. Results: The experimental results showed that optimum operation conditions for the pilot plasma reactor in batch experiments were 1 L/min air flow rate), 4 L/min liquid circulation rate, and 13 kV electric discharge voltage, respectively. The main operation factor of the pilot plasma process was the high voltage. In continuous operation of the air plasma process, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal condition of 13 kV were $10^{2.24}$ CFU/mL, 56.5% and 8.6%, respectively, while in oxygen plasma process at 10 kV, residual microorganisms, $UV_{254}$ absorbance and TOC removal rate at optimal conditions were $10^{1.0}$ CFU/mL, 73.3% and 24.4%, respectively. Electric power was increased exponentially with the increase in high voltage ($R^2$ = 0.9964). Electric power = $0.0492{\times}\exp^{(0.6027{\times}lectric\;discharge\;voltage)}$ Conclusions: Inactivation of microorganisms in sewage effluent using the pilot plasma process was done. The performance of oxygen plasma process was superior to air plasma process. The power consumption of oxygen plasma process was less than that of air plasma process. However, it was considered that the final evaluation of air and oxygen plasma must be evaluated by considering low power consumption, high process performance, operating costs and facility expenses of an oxygen generator.

Sterilization and quality variation of dried red pepper by atmospheric pressure dielectric barrier discharge plasma (대기압 유전체장벽방전 플라즈마에 의한 건고추의 식중독균 살균효과 및 품질변화)

  • Song, Yoon Seok;Park, Yu Ri;Ryu, Seung Min;Jeon, Hyeong Won;Eom, Sang Heum;Lee, Seung Je
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.960-966
    • /
    • 2016
  • This study was conducted to explore the potential for use of atmospheric pressure dielectric barrier discharge plasma (atmospheric pressure DBD plasma) as a non-thermal sterilization technology for microorganisms in dried red pepper. The effects of key parameters such as power, exposure time and distance on the sterilization efficiency and the quality of red dried pepper by the atmospheric pressure DBD plasma treatment were investigated. The results revealed that the plasma treatment was very effective for sterilization of Staphylococcus aureus, with 15 min of treatment at 1.0 kW and 20 mm sterilizing 82.6% of the S. aureus. Increasing the power or exposure time and decreasing the exposure distance led to improved sterilization efficiency. The atmospheric pressure DBD plasma treatment showed no effect on the ASTA (American spice trade association) value or hardness of dried red pepper. Furthermore, no effects of atmospheric pressure DBD plasma treatment were observed on the sensory properties of dried red pepper. To assess the storage stability, the dried red pepper was treated with atmospheric pressure DBD plasma (1.5 kW power, 15 min exposure time and 10 mm exposure distance), then stored for 12 weeks at $25^{\circ}C$. Consequently, the ASTA value, hardness and capsaicin concentration of dried red pepper were maintained.

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • Journal of the Speleological Society of Korea
    • /
    • no.76
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.

Monostatic RCS Measurement for Dielectric Barrier Discharge Plasma (유전체 장벽 방전 플라즈마의 Monostatic 레이다 단면적 측정)

  • Lee, Hyunjae;Jung, Inkyun;Ha, Jungje;Shin, Woongjae;Yang, Jin Mo;Lee, Yongshik;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • In this paper, reduction of monostatic RCS by DBD plasma is measured. For the calibration of monostatic RCS, S-parameters of two metallic plate in different sizes are used and the result is within 0.4 dB error. Metallic plate is put behind DBD plasma generator for measuring reduction of monostatic RCS by DBD plasma. To prevent arc discharge between metallic plate and DBD plasma generator, measurement is progressed spacing the interval between metallic plate and DBD plasma generator. As a result, maximum reduction of monostatic RCS is about 3 dB at 7.4 GHz.

Simulation of Low Temperature Plasmas for an Ultra Violet Light Source using Coplanar Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.138-144
    • /
    • 2016
  • The discharge characteristics of pulse-driven coplanar micro barrier discharges for an ultraviolet (UV) light source using Ne-Xe mixture have been investigated using a two-dimensional fluid simulation at near-atmospheric pressure. The densities of electrons, the radiative excited states, the metastable excited states, and the power loss are investigated with the variations of gas pressure and the gap distance. With a fixed gap distance, the number of the radiative states $Xe^*(^3P_1)$ increases with the increasing driving voltage, but this number shows weak dependency on the gas when that pressure is over 400 Torr. However, the number of the radiative states increases with the increase of the gap distance at a fixed voltage, while the power loss decreases. Therefore, a long gap discharge has higher efficiency for UV generation than does a short gap discharge. A slight change in the electrode tilt angle enhances the number of radiative species 2 or 3 times with the same operation conditions. Therefore, the intensity and efficiency of the UV light source can be controlled independently by changing the gap distance and the electrode structure.

Comparison of Phenol Removal between Electrochemical Reaction and Plasma Reaction

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.905-916
    • /
    • 2016
  • The characteristics of phenol removal and $UV_{254}$ matters variance were investigated and compared by the variation of operating factors (NaCl concentration, air flow rate, initial phenol concentration) in electrochemical reaction (ER) and dielectric barrier discharge plasma reaction (DBDPR), respectively. The phenol removal rate was shown as $1^{st}$ order both in ER and DBDPR. Also, the absorbance of $UV_{254}$ matters which means aromatic intermediates was analyzed to investigate the complete phenol degradation process. In ER, the phenol degradation and aromatic intermediates production rates increased by the increase of NaCl concentration. However, in DBDPR, the variation of NaCl concentration had no effect on the degradation of phenol and $UV_{254}$ matters. Air flow rate had a little effect on the removal of phenol and the variation of $UV_{254}$ matters in ER. The phenol removal rate in ER was a little higher than that in DBDPR. The produced $H_2O_2$ and $O_3$ amounts in ER were 2 times and 10 times higher than those in DBDPR. The chlorine intermediates ($ClO_2$ and free chlorine) were produced in ER, however, they were not produced in DBDPR.

A Study for Oxidants Generation on Oxygen-plasma Discharging Process Discharging System (산소-플라즈마 공정에서 산화제의 생성에 대한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1561-1569
    • /
    • 2013
  • This study carried out a laboratory scale plasma reactor about the characteristics of chemically oxidative species (${\cdot}OH$, $H_2O_2$ and $O_3$) produced in dielectric barrier discharge plasma. It was studied the influence of various parameters such as gas type, $1^{st}$ voltage, oxygen flow rate, electric conductivity and pH of solution for the generation of the oxidant. $H_2O_2$ and $O_3$.) $H_2O_2$ and $O_3$ was measured by direct assay using absorption spectrophotometry. OH radical was measured indirectly by measuring the degradation of the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical). The experimental results showed that the effect of influent gases on RNO degradation was ranked in the following order: oxygen > air >> argon. The optimum $1^{st}$ voltage for RNO degradation were 90 V. As the increased of $1^{st}$ voltage, generated $H_2O_2$ and $O_3$ concentration were increased. The intensity of the UV light emitted from oxygen-plasma discharge was lower than that of the sun light. The generated hydrogen peroxide concentration and ozone concentration was not high. Therefore it is suggested that the main mechanism of oxidation of the oxygen-plasma process is OH radical. The conductivity of the solution did not affected the generation of oxidative species. The higher pH, the lower $H_2O_2$ and $O_3$ generation were observed. However, RNO degradation was not varied with the change of the solution pH.