• Title/Summary/Keyword: Dielectric response

Search Result 198, Processing Time 0.028 seconds

Effect of Microstructure on Electrical Properties of Thin Film Alumina Capacitor with Metal Electrode (금속 전극 알루미나 박막 캐패시터의 전기적 특성에 미치는 미세구조의 영향)

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.309-313
    • /
    • 2011
  • The power capacitors used as vehicle inverters must have a small size, high capacitance, high voltage, fast response and wide operating temperature. Our thin film capacitor was fabricated by alumina layers as a dielectric material and a metal electrode instead of a liquid electrolyte in an aluminum electrolytic capacitor. We analyzed the micro structures and the electrical properties of the thin film capacitors fabricated by nano-channel alumina and metal electrodes. The metal electrode was filled into the alumina nano-channel by electroless nickel plating with polyethylene glycol and a palladium catalyst. The spherical metals were formed inside the alumina nano pores. The breakdown voltage and leakage current increased by the chemical reaction of the alumina layer and $PdCl_2$ solution. The thickness of the electroless plated nickel layer was 300 nm. We observed the nano pores in the interface between the alumina layer and the metal electrode. The alumina capacitors with nickel electrodes had a capacitance density of 100 $nF/cm^2$, dielectric loss of 0.01, breakdown voltage of 0.7MV/cm and leakage current of $10^4{\mu}A$.

Modeling and numerical simulation of electrostrictive materials and structures

  • Pechstein, Astrid;Krommer, Michael;Humer, Alexander
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.221-237
    • /
    • 2022
  • This paper is concerned with nonlinear modeling and efficient numerical simulation of electrostrictive materials and structures. Two types of such materials are considered: relaxor ferroelectric ceramics and electrostrictive polymers. For ceramics, a geometrically linear formulation is developed, whereas polymers are studied in a geometrically nonlinear regime. In the paper, we focus on constitutive modeling first. For the reversible constitutive response under consideration, we introduce the augmented Helmholtz free energy, which is composed of a purely elastic part, a dielectric part and an augmentation term. For the elastic part, we involve an additive decomposition of the strain tensor into an elastic strain and an electrostrictive eigenstrain, which depends on the polarization of the material. In the geometrically nonlinear case, a corresponding multiplicative decomposition of the deformation gradient tensor replaces the additive strain decomposition used in the geometrically linear formulation. For the dielectric part, we first introduce the internal energy, to which a Legendre transformation is applied to compute the free energy. The augmentation term accounts for the contribution from vacuum to the energy. In our formulation, the augmented free energy depends not only on the strain and the electric field, but also on the polarization and an internal polarization; the latter two are internal variables. With the constitutive framework established, a Finite Element implementation is briefly discussed. We use high-order elements for the discretization of the independent variables, which include also the internal variables and, in case the material is assumed incompressible, the hydrostatic pressure, which is introduced as a Lagrange multiplier. The elements are implemented in the open source code Netgen/NGSolve. Finally, example problems are solved for both, relaxor ferroelectric ceramics and electrostrictive polymers. We focus on thin plate-type structures to show the efficiency of the numerical scheme and its applicability to thin electrostrictive structures.

Establishment of a BaTiO3-based Computational Science Platform to Predict Multi-component Properties (다성분계 물성을 예측하기 위한 BaTiO3기반 계산과학 플랫폼 구축)

  • Lee, Dong Geon;Lee, Han Uk;Im, Won Bin;Ko, Hyunseok;Cho, Sung Beom
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.318-323
    • /
    • 2022
  • Barium titanate (BaTiO3) is considered to be a beneficial ceramic material for multilayer ceramic capacitor (MLCC) applications because of its high dielectric constant and low dielectric loss. Numerous attempts have been made to improve the physical properties of BaTiO3 in response to recent market trends by employing multicomponent alloying strategies. However, owing to its significant number of atomic combinations and unpredictable physical properties, finding a traditional experimental approach to develop multicomponent systems is difficult; the development of such systems is also time-consuming. In this study, 168 new structures were fabricated using special quasi-random structures (SQSs) of Ba1-xCaxTi1-yZryO3, and 1680 physical properties were extracted from first-principles calculations. In addition, we built an integrated database to manage the computational results, and will provide big data solutions by performing data analysis combined with AI modeling. We believe that our research will enable the global materials market to realize digital transformation through datalization and intelligence of the material development process.

Measurement of GPR Direct Wave Velocity by f-k Analysis and Determination of Dielectric Property by Dispersive Guided Wave (f-k 분석에 의한 레이다파 속도 측정 및 레이다파의 분산성 가이드 현상을 이용한 지하 물성 계산)

  • Yi, Myeong-Jong;Endres, Anthony L.;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.304-315
    • /
    • 2006
  • We have examined the applicability of f-k analysis to the GPR direct wave measurement for water content to characterize vadose zone condition. When the vadose zone consists of a dry surface layer over wet substratum, we obtained f-k spectra where most of the energy is bounded by the air and dry soil velocities. In this case, dry soil velocity was successfully estimated by using high frequency data. On the other hands, when wet soil overlies dry substratum, the f-k spectra show a contrasting response where most of the energy travels with the velocity bounded by dry and wet soil velocities. In this case, the radar waves are trapped and guided within wet soil layer, exhibiting velocity dispersion. By adopting modal propagation theory, we could formulae a simple inversion code to find two layer's dielectric constants as well as layer thickness. By inverting the velocity dispersion curve obtained from f-k spectra of synthetic modeling data, we could obtain good estimates of dielectric constants of each layer as well as first layer thickness. Moreover, we could obtain more accurate results by including the higher mode data. We expect this method will be useful to get the quantitative property of real subsurface when the field condition is similar.

Optimization of Gas Mixing-circulation Plasma Process using Design of Experiments (실험계획법을 이용한 가스 혼합-순환식 플라즈마 공정의 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.359-368
    • /
    • 2014
  • The aim of our research was to apply experimental design methodology in the optimization of N, N-Dimethyl-4-nitrosoaniline (RNO, which is indictor of OH radical formation) degradation using gas mixing-circulation plasma process. The reaction was mathematically described as a function of four independent variables [voltage ($X_1$), gas flow rate ($X_2$), liquid flow rate ($X_3$) and time ($X_4$)] being modeled by the use of the central composite design (CCD). RNO removal efficiency was evaluated using a second-order polynomial multiple regression model. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9111, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the RNO removal efficiency and independent variables in a coded unit: RNO removal efficiency (%) = $77.71+10.04X_1+10.72X_2+1.78X_3+17.66X_4+5.91X_1X_2+3.64X_2X_3-8.72X_2X_4-7.80X{_1}^2-6.49X{_2}^2-5.67X{_4}^2$. Maximum RNO removal efficiency was predicted and experimentally validated. The optimum voltage, air flow rate, liquid flow rate and time were obtained for the highest desirability at 117.99 V, 4.88 L/min, 6.27 L/min and 24.65 min, respectively. Under optimal value of process parameters, high removal(> 97 %) was obtained for RNO.

Study of Thermal Ageing Behavior of the Accelerated Thermally Aged Chlorosulfonated Polyethylene for Thermosetting Analysis (열경화성 분석을 위한 가속열화 된 Chlorosulfonated Polyethylene의 경년특성 연구)

  • Shin, Yong-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.800-805
    • /
    • 2017
  • The accelerated thermal ageing of CSPE (chlorosulfonated polyethylene) was carried out for 16.82, 50.45, and 84.09 days at $110^{\circ}C$, equivalent to 20, 60, and 100 years of ageing at $50^{\circ}C$ in nuclear power plants, respectively. As the accelerated thermally aged years increase, the insulation resistance and resistivity of the CSPE decrease, and the capacitance, relative permittivity and dissipation factor of those increase at the measured frequency, respectively. As the accelerated thermally aged years and the measured frequency increase, the phase degree of response voltage vs excitation voltage of the CSPE increase but the phase degree of response current vs excitation voltage decrease, respectively. As the accelerated thermally aged years increase, the apparent density, glass transition temperature and the melting temperature of the CSPE increase but the percent elongation and % crystallinity decrease, respectively. The differential temperatures of those are $0.013-0.037^{\circ}C$ and, $0.034-0.061^{\circ}C$ after the AC and DC voltages are applied to CSPE-0y and CSPE-20y, respectively; the differential temperatures of those are $0.011-0.038^{\circ}C$ and $0.002-0.028^{\circ}C$ after the AC and DC voltages are applied to CSPE-60y and CSPE-100y, respectively. The variations in temperature for the AC voltage are higher than those for the DC voltage when an AC voltage is applied to CSPE. It is found that the dielectric loss owing to the dissipation factor($tan{\delta}$) is related to the electric dipole conduction current. It is ascertained that the ionic (electron or hole) leakage current is increased by the partial separation of the branch chain of CSPE polymer as a result of thermal stress due to accelerated thermal ageing.

Delamination evaluation on basalt FRP composite pipe by electrical potential change

  • Altabey, Wael A.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.515-528
    • /
    • 2017
  • Since composite structures are widely used in structural engineering, delamination in such structures is an important issue of research. Delamination is one of a principal cause of failure in composites. In This study the electrical potential (EP) technique is applied to detect and locate delamination in basalt fiber reinforced polymer (FRP) laminate composite pipe by using electrical capacitance sensor (ECS). The proposed EP method is able to identify and localize hidden delamination inside composite layers without overlapping with other method data accumulated to achieve an overall identification of the delamination location/size in a composite, with high accuracy, easy and low-cost. Twelve electrodes are mounted on the outer surface of the pipe. Afterwards, the delamination is introduced into between the three layers (0º/90º/0º)s laminates pipe, split into twelve scenarios. The dielectric properties change in basalt FRP pipe is measured before and after delamination occurred using arrays of electrical contacts and the variation in capacitance values, capacitance change and node potential distribution are analyzed. Using these changes in electrical potential due to delamination, a finite element simulation model for delamination location/size detection is generated by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Response surfaces method (RSM) are adopted as a tool for solving inverse problems to estimate delamination location/size from the measured electrical potential changes of all segments between electrodes. The results show good convergence between the finite element model (FEM) and estimated results. Also the results indicate that the proposed method successfully assesses the delamination location/size for basalt FRP laminate composite pipes. The illustrated results are in excellent agreement with the experimental results available in the literature, thus validating the accuracy and reliability of the proposed technique.

Study of Humidity Sensing Properties Related to Metal Content of Aerosol Deposited Ceramic/Metal Composite Films (에어로졸 증착한 세라믹/금속 복합막의 금속 함량에 따른 습도 감지 특성 연구)

  • Kim, Ik-Soo;Koo, Sang-Mo;Park, Chulhwan;Shin, Weon Ho;Lee, Dong-Won;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.314-320
    • /
    • 2021
  • Controlling ambient humid condition through high performance humidity sensors has become important for various fields, including industrial process, food storage, and the preservation of historic remains. Although aerosol deposited humidity sensors using ceramic BaTiO3 (BT) material have been widely studied because of their longtime stability, there remain critical disadvantages, such as low sensitivity, low linearity, and slow response/recovery time in case of the sensors fabricated at room temperature. To achieve superior humidity sensing properties even at room temperature condition, BT-Cu composite films utilizing aerosol deposition (AD) process have been proposed based on the percolation theory. The BT-Cu composite films showed gradually improved sensing properties until the Cu concentration reached 15 wt% in the composite film. However, the excessive Cu (above 30 wt%) containing BT-Cu composite films showed a rapid decrease of the sensing properties. The results of observed surface morphology of the AD fabricated composite films, to figure out the metal filler effect, showed correlation between surface topography as well as size and the amount of open pores according to the metal filler content. Overall, it is very important not only dielectric constant of the humidity sensing films but also microstructures, because they affect either the variation range of capacitance by ambient humidity or adsorption/desorption of ambient humidity onto/from the humidity sensing films.

Capacitive-type Hydrogen Gas Sensor Using Ta2O5 as Sensitive Layer (감지막으로 Ta2O5를 이용한 정전용량형 수소 가스센서)

  • Choi, Je-Hoon;Kim, Seong-Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.882-887
    • /
    • 2013
  • We investigated a SiC-based hydrogen gas sensor with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications. The sensor was fabricated by Pd/$Ta_2O_5$/SiC structure, and a thin tantalum oxide ($Ta_2O_5$) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature as well as high permeability for hydrogen gas. In the experiment, dependence of I-V characteristics and capacitance response properties on hydrogen gas concentrations from 0 to 2,000 ppm was analyzed at room temperature to $500^{\circ}C$. As the result, our sensor exploiting a $Ta_2O_5$ dielectric layer showed possibilities with regard to use in hydrogen gas sensors for high-temperature applications.

Design and Acoustic Properties of Acoustic Device with Metal-Piezoceramic Circular Plate (금속-압전세라믹스로 구성된 음향소자의 설계 및 음향특성)

  • Go Young-Jun;Lee Sang-Wook;Nam Hyo-Duk;Chang Ho-Gyeong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.275-278
    • /
    • 2000
  • In this study, the acoustic transducer of a thin circular disc-type with PZT/Metal was designed. The dielectric and piezoelectric properties of $0.5wt\%$ $MnO_2$ and NiO doped 0.1Pb($Mg_{1/3}$$Nb_{2/3}$)$O_3$-$0.45PbTiO_3$-$0.45PbZrO_3$ ceramics were investigated aiming at acoustic transducer applications. The vibration characteristics for the laminated circular plate was analyzed for the various thickness and diameter of the piezoceramic layer and metal layer. The acoustic characteristics which is radiated from the acoustic transducer within the finite space was simulated using the finite element method. It has been observed that the characteristics of the sound pressure ard impedance response calculated for the various models of the size and geometry of acoustic transducer.

  • PDF