• Title/Summary/Keyword: Dielectric resistance

Search Result 330, Processing Time 0.027 seconds

Effect of gas composition on the characteristics of a-C:F thin films for use as low dielectric constant ILD (가스 조성이 저유전상수 a-C:F 층간절연막의 특성에 미치는 영향)

  • 박정원;양성훈;이석형;손세일;오경희;박종완
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.368-373
    • /
    • 1998
  • As device dimensions approach submicrometer size in ULSI, the demand for interlayer dielectric materials with very low dielectric constant is increased to solve problems of RC delay caused by increase in parasitic resistance and capacitance in multilevel interconnectins. Fluorinated amorphous carbon in one of the promising materials in ULSI for the interlayer dielectric films with low dielectric constant. However, poor thermal stability and adhesion with Si substrates have inhibited its use. Recently, amorphous hydrogenated carbon (a-C:H) film as a buffer layer between the Si substrate and a-C:F has been introduced because it improves the adhesion with Si substrate. In this study, therfore, a-C:F/a-C:H films were deposited on p-type Si(100) by ECRCVD from $C_2F_6, CH_4$and $H_2$gas source and investigated the effect of forward power and composition on the thickness, chemical bonding state, dielectric constant, surface morphology and roughness of a-C:F films as an interlayer dielectric for ULSI. SEM, FT-IR, XPS, C-V meter and AFM were used for determination of each properties. The dielectric constant in the a-C:F/a-C:H films were found to decrease with increasing fluorine content. However, the dielectric constant increased after furnace annealing in $N_2$atomosphere at $400^{\circ}C$ for 1hour due to decreasing of flurorine content. However, the dielectric constant increased after furnace annealing in $N_2$atmosphere at $400^{\circ}C$ for 1hour due to decreasing of fluorine concentration.

  • PDF

Effects of Crosslinking Agent and Flame Retardant on the Dielectric Properties of Poly(phenylene ether)-based Polymer Substrate Material (폴리페닐렌에테르계 고분자 기판 소재의 유전특성에 대한 가교제 및 난연제의 영향)

  • Kim, Dong-Kook;Park, Seong-Dae;Yoo, Myong-Jae;Lee, Woo-Sung;Kang, Nam-Kee;Lim, Jin-Kyu;Kyoung, Jin-Bum
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 2009
  • Polymer substrates were fabricated by using poly (phenylene ether) as a base resin, N,N'-m-phenylenedimaleimide (PDMI) as a crosslinking agent and decabromodiphenylethane as a flame retardant. The effects of crosslinking agent and flame retardant on physical properties such as dielectric property of the substrate were investigated. Thermal curing feature of PDMI with or without an initiator was analyzed by DSC, and then, PPE-PDMI test compositions were designed based on this result. Composite sheets were cast by film coater, laminated under vacuum and pressure, and then, the changes of dielectric constant, dielectric loss, peel strength, solder heat resistance and inflammability according to increasing amount of PDMI and flame retardant were evaluated, Dielectric constant and dielectric loss showed increasing trend with increasing amount of PDMI and flame retardant, but solder heat resistance and inflammability were improved. Peel strength was obtained higher than 1 kN/m when PDMI above 10 wt% was added, but slightly decreased as the amount of flame retardant increased. From the measured gel contents, the reaction mechanism of PPE-PDMI system was deduced to the formation of network structure by crosslinking PDMI with PPE rather than the formation of semi-IPN structure. In conclusion, the polymer composite substrate materials with dielectric constant of 2.52$\sim$2.65 and dielectric loss below 0.002 at 1 GHz were obtained and they will be proper for high frequency applications.

Design and Fabrication of Thin Microwave Absorbers of ITO/Dielectric Structures Used for Mobile Telecommunication Frequency Bands (ITO박막/세라믹유전체 구조의 이동통신 주파수대역용 박형 전파흡수체의 설계 및 제조)

  • Yoon, Yeo-Choon;Kim, Sung-Soo
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.259-265
    • /
    • 2003
  • For the aim of thin microwave absorbers used in mobile telecommunication frequency band, this study proposed a high permittivity dielectrics(λ/4 spacer) coated with ITO thin films of 377 $\Omega$/sq(impedance transformer). High frequency dielectric properties of ferroelectric ceramics, electrical properties of ITO thin films and microwave absorbing properties of ITO/dielectrics were investigated. Ferroelectric materials including $BaTiO_3$(BT), 0.9Pb($Mg_{1}$3/Nb$_{2}$3/)$O_3$-0.1 $PbTiO_3$(PMN-PT), 0.8 Pb (Mg$_{1}$3/$Nb_{2}$3/)$O_3$-0.2 Pb($Zn_{1}$3$_Nb{2}$3/)$O_3$(PMN-PZN) were prepared by ceramic processing for high permittivity dielectrics,. The ferroelectric materials show high dielectric constant and dielectric loss in the microwave frequency range. The microwave absorbance (at 2 ㎓) of BT, 0.9PMN-0.1PT, and 0.8PMN-0.2PZN were found to be 60%(at a thickness of 3.5 mm), 20% (2.5 mm), and 30% (2.5 mm), respectively. By coating the ITO thin films on the ferroelectric substrates with λ/4 thickness, the microwave absorbance is greatly improved. Particularly, when the surface resistance of ITO films is closed of 377 $\Omega$/sq, the reflection loss is reduced to -20 ㏈(99% absorbance). This is attributed to the wave impedance matching controlled by ITO thin films at a given thickness of high permittivity dielectrics of λ/4 (3.5 mm for BT, 2.5 mm for PMN-PT and PMN-PZN at 2 ㎓). It is, therefore, successfully proposed that the ITO/ferroelectric materials with controlled surface resistance and high dielectric constant can be useful as a thin microwave absorbers in mobile telecommunication frequency band.

Microstructure and Dielectric Properties of a SrTiO3-based GBL Capacitor (SrTiO3계 GBL Capacitor의 미세구조 및 유전특성)

  • 천채일;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.270-276
    • /
    • 1987
  • The microstructure and dielectric properties of a SrTiO3-based GBL (Grain Boundary Layer) capacitor were investigated. The 0.6 mol% Nb2O5 doped SrTiO3 was sintered for 3 hr at 1450$^{\circ}C$ in mixed gas(N2/H2) atmosphere. The Nb2O5 promoted the grain growth of the SrTiO3 ceramics was decreased with the amount of Nb2O5. The oxide mixture(PbO, Bi2O3, B2O3) were painted on the reduced specimen and fired at 1000$^{\circ}C$ to 1100$^{\circ}C$ in air. The penetrated oxide mixture into specimen were located in grain boundaries. A SrTiO3-based GBL capacitor had the apparent permittivity of about 3.0${\times}$104, the dielectric loss of 0.01-0.02, and insulating resistance of 108-109$\Omega$.cm. The capacitor had the stable temperature coefficient of capacitance and exhibited dielectric dispersion over 107 Hz. The capacitance-voltage measurements indicated that the grain boundary was composed of the continuous insulating layers.

  • PDF

Interfacial Electrical/Dielectric Characterization in Low Temperature Polycrystalline Si

  • Hwang, Jin-Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.77-85
    • /
    • 2005
  • Impedance spectroscopy was applied to low temperature polycrystalline Si in order to investigate the electrical/dielectric information in polycrystalline Si. By combined microstructure and impedance spectroscopy works, it was shown that the electrical information is sensitive to the corresponding microstructure, i.e., the grain size and distribution, judged from the capacitance vs. grain size relationship. At $360 mJ/cm^2$, the maximum in capacitance and the minimum in resistance correspond to the largest grain sizes of unimodal distribution in polycrystalline Si. The electrical/dielectric characterization is compared with Raman spectroscopic characterizations in terms of microstructure.

  • PDF

Application of Impedance Spectroscopy to Cement-Based Materials: Hydration of Calcium Phosphate Bone Cements

  • Kim, Sung-Moon;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.156-161
    • /
    • 2006
  • Impedance spectroscopy was applied to the initial hydration of calcium phosphate bone cements in order to investigate the electrical/dielectric properties. Hydration or equivalently setting was monitored as a function of the amount of water and initial powder characteristics. Higher amounts of water produced more open microstructures, leading to higher conductivity and enhanced dielectric constant. The effects of the initial characteristics in the powder were investigated using bone cement powder prepared with and without granulation. Granulated powder exhibited a significant change in resistance and produced a higher dielectric constant than those of conventional powder. Through a simplified modeling, the effects of thickness in reaction products and pore sizes were estimated by the frequency-dependent impedance measurements. Furthermore, impedance spectroscopy was proven to be a highly reliable tool for evaluating the continuous change in pore structure occurring in calcium phosphate bone cements.

Electrical Properties of Polyethylene of Raised Temperature (내열성 폴리에틸렌 (PE-RT)의 전기적 특성)

  • Kim, Won-Jung;Kim, Tae-Young;Gan, Hye-Seoung;Kwon, Soon-Jae;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.254-255
    • /
    • 2008
  • In this study, electrical properties of polyethylene of raised temperature resistance (PE-RT) have been studied through an examination of AC conductivity, dielectric constant, and space charge distributions. A dielectric constant was investigated by Dielectric Analyzer (DEA). Measurements of space charge distributions for PE-RT were carried out using Pulsed Electroacoustic (PEA) techniques, and it was possible to observe the negative charge near the cathode overlapped with the positive induced charge peak, the polarity of which remains unchanged after a short circuit.

  • PDF

The Effect on Antioxidant for Improving to Radiation Resistance on Irradiated PVDF (PVDF의 내방사선 특성 향상을 위한 산화방지제 첨가효과)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.252-253
    • /
    • 2005
  • The dielectric relaxation properties of $^{60}Co$ gamma-ray irradiated Poly(vinylidene fluoride) (PVDF) containing various antioxidants have been investigated for radiation degradation. Cole-Cole's circular arcs were induced from the results of temperature and frequency dependency of dielectric properties with radiation dose. The magnitude of polarization of PVDF was decreased by adding antioxidants. The values of dielectric relaxation intensity calculated by using the Cole-Cole's circular arcs showed a certain tendency for radiation degradation.

  • PDF

High Performance Polyimides for Applications in Microelectronics and Flat Panel Displays

  • Ree Moonhor
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.1-33
    • /
    • 2006
  • Polyimides (PIs) exhibit excellent thermal stability, mechanical, dielectric, and chemical resistance properties due to their heterocyclic imide rings and aromatic rings on the backbone. Due to these advantageous properties, PIs have found diverse applications in industry. Most PIs are insoluble because of the nature of the high chemical resistance. Thus, they are generally used as a soluble precursor polymer, which forms complexes with solvent molecules, and then finally converts to the corresponding polyimides via imidization reaction. This complexation with solvent has caused severe difficulty in the characterization of the precursor polymers. However, significant progress has recently been made on the detailed characterization of PI precursors and their imidization reaction. On the other hand, much research effort has been exerted to reduce the dielectric constant of PIs, as demanded in the microelectronics industry, through chemical modifications, as well as to develop high performance, light-emitting PIs and liquid crystal (LC) alignment layer PIs with both rubbing and rubbing-free processibility, which are desired in the flat-panel display industry. This article reviews this recent research progresses in characterizing PIs and their precursors and in developing low dielectric constant, light-emitting, and LC alignment layer PIs.

Dielectric loss of silicone oils for insulation due to the increase of viscosity (점도증가에 따른 절연용 실리콘유의 유전손실)

  • 이용우;조경순;김왕곤;홍진웅
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.587-593
    • /
    • 1995
  • Silicone oils used insulating substances exhibit the both of organic and inorganic properties, and it has many superior characteristics such as the high thermal resistance and low thermal oxidation level when compared to other insulation oils. In order to investigate the dielectric loss due to the increase of viscosity, silicone oils of viscosity 1, 2, 5[cSt] had been chosen as the specimen and experiment has been performed in the temperature range of -70[.deg. C] - 65[.deg. C] and frequency range of 30 - 1*10$\^$5/[Hz]. As a result, the linear decrease of loss at low frequency region in high temperature was due to the influence of applying frequency, whereas the increase of loss at high frequency region was contributed by electrode's resistance. And increasing viscosity, the activation energy increased from 3.77[kcal/mole] to 7.21[kcal/mole]. The dipole moment of specimen was become clear 1.48 - 2.26[debyel in high temperature region(5 - 65[.deg. C]) and 1.05 - 1.80[debye] in low temperature region (-70 - -25[.deg. C])respectively.

  • PDF