High Performance Polyimides for Applications in Microelectronics and Flat Panel Displays

  • Ree Moonhor (Department of Chemistry, National Research Lab. for Polymer Syntesis & Physics, and Polymer Research Institute, Pohang University of Science & Technology)
  • Published : 2006.02.01

Abstract

Polyimides (PIs) exhibit excellent thermal stability, mechanical, dielectric, and chemical resistance properties due to their heterocyclic imide rings and aromatic rings on the backbone. Due to these advantageous properties, PIs have found diverse applications in industry. Most PIs are insoluble because of the nature of the high chemical resistance. Thus, they are generally used as a soluble precursor polymer, which forms complexes with solvent molecules, and then finally converts to the corresponding polyimides via imidization reaction. This complexation with solvent has caused severe difficulty in the characterization of the precursor polymers. However, significant progress has recently been made on the detailed characterization of PI precursors and their imidization reaction. On the other hand, much research effort has been exerted to reduce the dielectric constant of PIs, as demanded in the microelectronics industry, through chemical modifications, as well as to develop high performance, light-emitting PIs and liquid crystal (LC) alignment layer PIs with both rubbing and rubbing-free processibility, which are desired in the flat-panel display industry. This article reviews this recent research progresses in characterizing PIs and their precursors and in developing low dielectric constant, light-emitting, and LC alignment layer PIs.

Keywords

References

  1. W. M. Edwards and I. M. Robinson, U.S. Patent 2,867,609 (1959)
  2. J. A. Kreuz, U.S. Patent 3,271,366 (1966)
  3. C. E. Sroog, Prog. Polym. Sci., 16, 561 (1991) https://doi.org/10.1016/0079-6700(91)90010-I
  4. M. I. Bessonov and V. A. Zubkov (eds.), Polyamic acids and Polyimides: Synthesis, Transformations, and Structure, CRS, Boca Raton, LA, 1993
  5. K. L. Ghosh and K. L. Mittal (eds.), Polyimides: Fundamentals and Applications, Dekker, New York, 1996
  6. M. Ree, K. Kim, S. H. Woo, and H. Chang, J. Appl. Phys., 81, 698 (1997) https://doi.org/10.1063/1.364210
  7. M. Ree, S. H. Woo, K. Kim, H. Chang, W. C. Zin, K. B. Lee, and Y. J. Park, Macromol. Symp., 118, 213 (1997)
  8. S. Numata, K. Fujisaki, and N. Kinjo, Polymer, 28, 2282 (1987) https://doi.org/10.1016/0032-3861(87)90388-0
  9. A. S. Argon and M. I. Bessonov, Polym. Eng. Sci., 17, 174 (1977) https://doi.org/10.1002/pen.760170306
  10. H. Ishida, S. T. Wellinghoff, E. Baer, and J. L. Koenig, Macromolecules, 13, 826 (1980) https://doi.org/10.1021/ma60076a011
  11. S. T. Wellinghoff, H. Ishida, J. L. Koenig, and E. Baer, Macromolecules, 13, 834 (1980) https://doi.org/10.1021/ma60076a012
  12. J. R. Havens, H. Ishida, and J. L. Koenig, Macromolecules, 14, 1327 (1981) https://doi.org/10.1021/ma50006a036
  13. M. Ree, D. Y. Yoon, and W. Volksen, J. Polym. Sci.; Part B: Polym. Phys., 29, 1203 (1991) https://doi.org/10.1002/polb.1991.090291005
  14. M. Ree, D. Y. Yoon, and W. Volksen, Polym. Preprints, 31, 613 (1990)
  15. S. Rojstaczer, M. Ree, D. Y. Yoon, and W. Volksen, J. Polym. Sci.; Part B: Polym. Phys., 30, 133 (1992) https://doi.org/10.1002/polb.1992.090300203
  16. Y. Kim, M. Ree, T. Chang, C. S. Ha, T. L. Nunes, and J. S. Lin, J. Polym. Sci.; Part B: Polym. Phys., 33, 2075 (1995) https://doi.org/10.1002/polb.1995.090331409
  17. M. Ree, T. L. Nunes, and K.-J. R. Chen, J. Polym. Sci.; Part B: Polym. Phys., 33, 453 (1995) https://doi.org/10.1002/polb.1995.090330314
  18. J. K. Gillham and H. C. Gillham, Polym. Eng. Sci., 13, 447 (1973) https://doi.org/10.1002/pen.760130609
  19. M. Kochi, S. Isoda, R. Yokota, and H. Kambe, J. Polym. Sci.; Part B: Polym. Phys., 24, 1619 (1986) https://doi.org/10.1002/polb.1986.090240718
  20. E. Butta, S. De Petris, and M. Pasquini, J. Appl. Polym. Sci., 13, 1073 (1969) https://doi.org/10.1002/app.1969.070130601
  21. W. Wrasidlo, J. Macromol. Sci.-Phys., B3, 559 (1972)
  22. Y. Kim, W. H. Goh, T. Chang, C. S. Ha, and M. Ree, Adv. Eng. Mater., 6, 39 (2004) https://doi.org/10.1002/adem.200300546
  23. K. H. Choi, J. C. Jung, H. S. Kim, B. H. Sohn, W.-C. Zin, and M. Ree, Polymer, 45, 1517 (2004) https://doi.org/10.1016/j.polymer.2003.12.039
  24. I. S. Chung, C. E. Park, M. Ree, and S. Y. Kim, Chem. Mater., 13, 2801 (2001) https://doi.org/10.1021/cm000838l
  25. J. Yu, M. Ree, Y. H. Park, T. J. Shin, W. Cai, D. Zhou, and K.-W. Lee, Macromol. Chem. Phys., 201, 491 (2000) https://doi.org/10.1002/(SICI)1521-3935(20000301)201:5<491::AID-MACP491>3.0.CO;2-2
  26. M. Ree, T. J. Shin, T. L. Nunes, and W. Volksen, Polymer, 41, 2105 (2000) https://doi.org/10.1016/S0032-3861(99)00385-7
  27. J. Yu, M. Ree, T. J. Shin, X. Wang, W. Cai, D. Zhou, and K.-W. Lee, Polymer, 41, 169 (2000) https://doi.org/10.1016/S0032-3861(99)00141-X
  28. J. Yu, M. Ree, T. J. Shin, X. Wang, W. Cai, D. Zhou, and K.- W. Lee, J. Polym. Sci.; Polym. Phys., 37, 2806 (1999) https://doi.org/10.1002/(SICI)1099-0488(19991001)37:19<2806::AID-POLB10>3.0.CO;2-U
  29. S. I. Kim, T. J. Shin, M. Ree, G. T. Hwang, B. H. Kim, H. Han, and J. Seo, J. Polym. Sci.; Part A: Polym. Chem., 37, 2013 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2013::AID-POLA15>3.0.CO;2-J
  30. H. Han, H. Chung, C. C. Gryte, T. J. Shin, and M. Ree, Polymer, 40, 2681 (1999) https://doi.org/10.1016/S0032-3861(98)00481-9
  31. M. Ree, T. J. Shin, Y.-H. Park, S. I. Kim, S. H. Woo, C. K. Cho, and C. E. Park, J. Polym. Sci., Polym. Phys., 36, 1261 (1998) https://doi.org/10.1002/(SICI)1099-0488(199806)36:8<1261::AID-POLB1>3.0.CO;2-V
  32. H. Han, J. Seo, M. Ree, S. M. Pyo, and C. C. Gryte, Polymer, 39, 2963 (1998) https://doi.org/10.1016/S0032-3861(97)00602-2
  33. M. Ree, T. J. Shin, S. I. Kim, S. H. Woo, and D. Y. Yoon, Polymer, 39, 2521 (1998) https://doi.org/10.1016/S0032-3861(97)00555-7
  34. Y. Kim, E. Kang, Y. S. Kwon, W. J. Cho, C. Chang, M. Ree, T. Chang, and C. S. Ha, Synth. Metals, 85, 1399 (1997) https://doi.org/10.1016/S0379-6779(97)80291-3
  35. M. Ree, Y.-H. Park, K. Kim, C. K. Cho, and C. E. Park, Polymer, 38, 6333 (1997) https://doi.org/10.1016/S0032-3861(97)00193-6
  36. Y. Kim, W. K. Lee, W. J. Cho, C. S. Ha, M. Ree, and T. Chang, Polym. Internl, 43, 129 (1997) https://doi.org/10.1002/(SICI)1097-0126(199706)43:2<129::AID-PI715>3.0.CO;2-S
  37. K.-W. Lee, A. Viehbeck, G. F. Walker, S. Cohen, P. Zucco, R. Chen, and M. Ree, J. Adhesion Sci. Technol., 10, 807 (1996) https://doi.org/10.1163/156856196X00869
  38. Y. Kim, M. Ree, T. Chang, and C.S. Ha, Polymer Bulletin, 34, 175 (1995) https://doi.org/10.1007/BF00316393
  39. H. C. Lee, M. Ree, and T. Chang, Polymer, 36, 2215 (1995) https://doi.org/10.1016/0032-3861(95)95299-G
  40. M. Ree, H. Han, and C. C. Gryte, High Perform. Polymers, 6, 325 (1994)
  41. M. Ree, T. L. Nunes, and J. S. Lin, Polymer, 35, 1148 (1994) https://doi.org/10.1016/0032-3861(94)90005-1
  42. M. Ree, S. Swanson, and W. Volksen, Polymer, 34, 1423 (1993) https://doi.org/10.1016/0032-3861(93)90855-5
  43. M. Ree, K. J. Chen, D. P. Kirby, N. Katzenellenbogen, and D. Grischkowsky, J. Appl. Phys., 72, 2014 (1992) https://doi.org/10.1063/1.351629
  44. W. M. Robertson, G. Arjavalingam, G. Hougham, G. V. Kopcsay, D. Edelstein, M. Ree, and J. P. Chapple-Sokol, Electronics Lett., 28, 62 (1992) https://doi.org/10.1049/el:19920039
  45. M. Ree, T. L. Nunes, G. Czornyj, and W. Volksen, Polymer, 33, 1228 (1992) https://doi.org/10.1016/0032-3861(92)90768-R
  46. C. R. Moylan, M. E. Best, and M. Ree, J. Polym. Sci.; Part B: Polym. Phys., 29, 87 (1991) https://doi.org/10.1002/polb.1991.090290111
  47. M. Ree, T. J. Shin, Y. H. Park, H. Lee, and T. Chang, Korea Polym. J., 7, 370 (1999)
  48. G. Czornyj, M. Ree, W. Volksen, and D.Y. Yang, U.S. Patent 5,446,074 (1995)
  49. M. Ree, K. Kim, and S. M. Pyo, Korea Patent 0242684 (1999)
  50. M. Ree, W. Volksen, and D.Y. Yoon, U.S. Patent 5,302,851 (1994)
  51. M. Ree, S. A. Swanson, W. Volksen, and D. Y. Yoon, U.S. Patent 4,954,578 (1990)
  52. M. Ree, K. Kim, and S. M. Pyo, Korea Patent 0255613 (2000)
  53. M. Ree, S. M. Pyo, and S. I. Kim, Korea Patent Application 1998-14242 (1998)
  54. L. F. Thompson, C. G. Willson, and S. Tagawa (eds.), Polymers for Microelectronics: Resists and Dielectrics (ACS. Symp. Ser. Vol. 537), Am. Chem. Soc., Washington, DC., 1994
  55. A. Deutsch, M. Swaminathan, M. Ree, C. Surovic, G. Arjavalingam, K. Prasad, D. C. McHoerron, M. McAllister, G. V. Kopcsay, A. P. Giri, E. Perfecto, and G. E. White, IEEE Trans. Comp. Packag. Manuf. Technol.: Part B: Adv. Packaging, 17, 486 (1994) https://doi.org/10.1109/96.338713
  56. G. Czornyj, K. J. Chen, G. Prada-Silva, A. Arnold, H. A. Souleotis, S. Kim, M. Ree, W. Volksen, D. Dawson, and R. DiPietro, Proc. Elect. Comp. Tech. (IEEE), 42, 682 (1992)
  57. L. Shao, T. S. Chung, G. Wensley, S. H. Goh, and K. P. Pramoda, J. Membr. Sci., 244, 77 (2004) https://doi.org/10.1016/j.memsci.2004.07.005
  58. T. Suzuki and Y. Yamada, Polymer Bulletin, 53, 139 (2005) https://doi.org/10.1007/s00289-004-0322-9
  59. Y. C. Wang, S. H. Huang, C. C. Huc, C. L. Li, K. R. Lee, D. J. Liaw, and J. Y. Lai, J. Membr. Sci., 248, 15 (2005) https://doi.org/10.1016/j.memsci.2004.09.015
  60. Y. K. Kim, J. M. Lee, H. B. Park, and Y. M. Lee, J. Membr. Sci., 235, 139 (2004) https://doi.org/10.1016/j.memsci.2004.02.004
  61. M. Ree, H. Han, and C.C. Gryte, J. Polym. Sci.; Part B: Polym. Phys. Ed., 33, 505 (1995) https://doi.org/10.1002/polb.1995.090330319
  62. H. Han, C.C. Gryte, and M. Ree, Polymer, 36, 1663 (1995) https://doi.org/10.1016/0032-3861(95)99012-J
  63. M. Ree, K.-J. R. Chen, and G. Czornyj, Polym. Eng. Sci., 32, 924 (1992) https://doi.org/10.1002/pen.760321403
  64. H. Han and M. Ree, Korea Polym. J., 5, 152 (1997)
  65. B. Chae, S.W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, J. Phys. Chem. B, 107, 11911 (2003) https://doi.org/10.1021/jp034955q
  66. S. W. Lee, S. I. Kim, B. Lee, H. C. Kim, T. Chang, and M. Ree, Langmuir, 19, 10381 (2003) https://doi.org/10.1021/la0348158
  67. B. Chae, S. W. Lee, B. Lee, W. Choi, S. B. Kim, Y. M. Jung, J. C. Jung, K. H. Lee, and M. Ree, Langmuir, 19, 9459 (2003) https://doi.org/10.1021/la034230d
  68. S. W. Lee, B. Chae, B. Lee, W. Choi, S. B. Kim, S. I. Kim, S.-M. Park, J. C. Jung, K. H. Lee, and M. Ree, Chem. Mater., 15, 3105 (2003) https://doi.org/10.1021/cm034055m
  69. S. J. Lee, J. C.Jung, S. W. Lee, and M. Ree, J. Polym. Sci., Polym. Chem., 42, 3130 (2004) https://doi.org/10.1002/pola.20165
  70. M. Ree, S. I. Kim, and S. M. Pyo, Korea Patent 0233876 (1999)
  71. M. Ree, S. I. Kim, and S. W. Lee, Synth. Metals, 117, 273 (2001) https://doi.org/10.1016/S0379-6779(00)00384-2
  72. Y. Sakai, M. Ueda, A. Yahagi, and N. Tanno, Polymer, 43, 3497 (2002) https://doi.org/10.1016/S0032-3861(02)00021-6
  73. S. Morino, T. Yamashita, K. Horie, T. Wada, and H. Sasabe, React. Funct. Polymers, 44, 183 (2000) https://doi.org/10.1016/S1381-5148(99)00096-6
  74. S. W. Lee, S. I. Kim, B. Lee, W. Choi, B. Chae, S. B. Kim, and M. Ree, Macromolecules, 36, 6527 (2003) https://doi.org/10.1021/ma034445u
  75. S. W. Lee, T. Chang, and M. Ree, Macromol. Rapid Commun., 22, 941 (2001) https://doi.org/10.1002/1521-3927(20010801)22:12<941::AID-MARC941>3.0.CO;2-Q
  76. M. Ree and S. W. Lee, Korea Patent 0340729 (2002)
  77. S. W. Lee and M. Ree, Mol. Cryst. Liq. Cryst., 368, 4277 (2001)
  78. M. Ree, S. W. Lee, and J.-H. Kim, Mol. Cryst. Liq. Cryst., 368, 4271 (2001)
  79. S. I. Kim, S. W. Lee, Y. H. Park, and M. Ree, Mol. Cryst. Liq. Cryst., 349, 275 (2000) https://doi.org/10.1080/10587250008024918
  80. M. Ree, S. W. Lee, and J. H. Kim, Korea Patent 0348151 (2002)
  81. M. Ree, S. W. Lee, H. H. Shin, M. S. Nam, and S. H. Park, U.S. Patent 6,770,335 B2 (2004)
  82. M. Ree, S. W. Lee, H. H. Shin, M. S. Nam, and S. H. Park, U.S. Patent 6,793,987 B2 (2004)
  83. S. M. Pyo, S. I. Kim, T. J. Shin, M. Ree, K. H. Park, and J. S. Kang, Polymer, 40, 125 (1998) https://doi.org/10.1016/S0032-3861(98)00231-6
  84. S. M. Pyo, S. I. Kim, T. J. Shin, M. Ree, K. H. Park, and J. S. Kang, Macromolecules, 31, 4777 (1998) https://doi.org/10.1021/ma971399n
  85. T. J. Shin, H. K. Park, S. W. Lee, B. Lee, W. Oh, J.-S. Kim, S. Baek, Y.-T. Hwang, H.-C. Kim, and M. Ree, Polym. Eng. Sci., 46, 1232 (2003)
  86. H. K. Park and M. Ree, Synth. Metals, 117, 197 (2001) https://doi.org/10.1016/S0379-6779(00)00499-9
  87. M. Ree, S. I. Kim, S. M. Pyo, T. J. Shin, H. K. Park, and J. C. Jung, Macromol. Symp., 142, 73 (1999)
  88. M. Ree, S. M. Pyo, S. I. Kim, and H. K. Park, Korea Patent 0263993 (2000)
  89. S. I. Kim, T. J. Shin, S. M. Pyo, J. M. Moon, and M. Ree, Polymer, 40, 1603 (1999) https://doi.org/10.1016/S0032-3861(98)00375-9
  90. S. M. Pyo, S. I. Kim, T. J. Shin, Y. H. Park, and M. Ree, J. Polym. Sci.; Part A: Polym. Chem., 37, 937 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990401)37:7<937::AID-POLA10>3.0.CO;2-I
  91. M. Ree, W. H. Goh, and Y. Kim, Polymer Bulletin, 35, 215 (1995) https://doi.org/10.1007/BF00312917
  92. K. R. Carter, R. A. DiPietro, M. I. Sanchez, and S. A. Swanson, Chem. Mater., 13, 213 (2001) https://doi.org/10.1021/cm990707o
  93. A. Mochizuki, T. Fukuoka, M. Kanada, N. Kinjou, and T. Yamamoto, J. Photopolym. Sci. Technol., 15, 159 (2002) https://doi.org/10.2494/photopolymer.15.159
  94. K. Kim, Ph.D. Thesis, Pohang University of Science & Technology, 1997
  95. S. I. Kim, Ph.D. Thesis, Pohang University of Science & Technology, 1999
  96. S.-B. Park, H. Kim, W.-C. Zin, and J. C. Jung, Macromolecules, 26, 1627 (1993) https://doi.org/10.1021/ma00059a021
  97. J. C. Jung and S.-B. Park, Polymer Bulletin, 35, 423 (1995) https://doi.org/10.1007/BF00297607
  98. J. C. Jung and S.-B. Park, J. Polym. Sci.; Part A: Polym. Chem., 34, 357 (1996) https://doi.org/10.1002/(SICI)1099-0518(199602)34:3<357::AID-POLA4>3.0.CO;2-R
  99. H. Kim, J. C. Jung, and W.-C. Zin, Polymer, 37, 2573 (1996) https://doi.org/10.1016/0032-3861(96)85374-2
  100. K. H. Lee and J. C. Jung, Polymer Bulletin, 40, 407 (1998) https://doi.org/10.1007/s002890050270
  101. S. W. Lee, S. I. Kim, Y. H. Park, M. Ree, K. H. Lee, and J. C. Jung, Mol. Cryst. Liq. Cryst., 349, 271 (2000) https://doi.org/10.1080/10587250008024917
  102. T. Matsuura, M. Ishizawa, Y. Hasuda, and S. Nishi, Macromolecules, 25, 3540 (1992). https://doi.org/10.1021/ma00039a036
  103. K. Kim and M. Ree, J. Polym. Sci.; Part A: Polym. Chem., 36, 1755 (1998) https://doi.org/10.1002/(SICI)1099-0518(199808)36:11<1755::AID-POLA8>3.0.CO;2-Q
  104. S. Numata, K. Fujisaki, and N. Kinjo, Polymer, 28, 2282 (1987) https://doi.org/10.1016/0032-3861(87)90388-0
  105. W. H. Goh, K. Kim, and M. Ree, Korea Polym. J., 6, 241 (1998)
  106. S. M. Pyo, T. J. Shin, S. I. Kim, and M. Ree, Mol. Cryst. Liq. Cryst., 316, 353 (1998) https://doi.org/10.1080/10587259808044526
  107. E. Sacher, J. Macromol. Sci.; Phys. B, 25, 405 (1986) https://doi.org/10.1080/00222348608248048
  108. R. W. Snyder and C. W. Sheen, Appl. Spect., 42, 655 (1988) https://doi.org/10.1366/0003702884429300
  109. S. E. Molis, R. Saraf, and R. T. Hodgson, ANTEC-Conf. Proc., 37, 1700 (1991)
  110. C. A. Pryde, J. Polym. Sci.; Part A: Polym. Chem., 27, 711 (1989) https://doi.org/10.1002/pola.1989.080270229
  111. S. I. Kim, S. M. Pyo, and M. Ree, Macromolecules, 30, 7890 (1997) https://doi.org/10.1021/ma970556f
  112. S. I. Kim, S. M. Pyo, K. Kim, and M. Ree, Polymer, 39, 6489 (1998) https://doi.org/10.1016/S0032-3861(98)00065-2
  113. E. Jenckel and R. Heusch, Kolloid-Z., 130, 89 (1953) https://doi.org/10.1007/BF01519799
  114. I. Uemastu and K. Honda, Reports Prog. Polym. Phys. Jpn., 10, 245 (1966)
  115. W. Kuhn, Kolloid-Z., 76, 258 (1936) https://doi.org/10.1007/BF01451143
  116. T. M. Birshtein, V. A. Zubkov, I. S. Milevskaya, V. E. Eskin, I. A. Baranovskaya, M. M. Koton, V. V. Kudryavtsev, and V. P. Sklizkova, Eur. Polym. J., 13, 375 (1977) https://doi.org/10.1016/0014-3057(77)90098-2
  117. P. Flory, Statical Mechanics of Chain Molecules, Wiley & Sons, New York, 1969
  118. S. I. Kim, T. J. Shin, and M. Ree, Polymer, 40, 2263 (1999) https://doi.org/10.1016/S0032-3861(98)00440-6
  119. M. Ree, C. W. Chu, and M. J. Goldberg, J. Appl. Phys., 75, 1410 (1994) https://doi.org/10.1063/1.356422
  120. M. Ree, T. J. Shin, and S. W. Lee, Korea Polym. J., 9, 1 (2001)
  121. K. Kim, J. H. Ryou, Y. Kim, M. Ree, and T. Chang, Polymer Bulletin, 34, 219 (1995) https://doi.org/10.1007/BF00316399
  122. T. J. Shin, B. Lee, H. S. Youn, K.-B. Lee, and M. Ree, Langmuir, 17, 7842 (2001) https://doi.org/10.1021/la0108656
  123. T. J. Shin and M. Ree, Macromol. Chem. Phys., 203, 781 (2002)
  124. B. Thomson, Y. Park, P. C. Painter, and R. W. Snyder, Macromolecules, 22, 4159 (1989) https://doi.org/10.1021/ma00201a005
  125. R. W. Synder, B. Thompson, B. Bartges, D. Czerniawski, and P. C. Painter, Macromolecules, 22, 4166 (1989) https://doi.org/10.1021/ma00201a006
  126. J. Labadie, H. Lee, D. Boese, D. Y. Yoon, W. Volksen, P. Brock, Y. Y. Cheng, M. Ree, and K. R. Chen, Proc. Elect. Comp. Tech. (IEEE), 43, 327 (1993)
  127. M. Ree, W. H. Goh, J. W. Park, M. H. Lee, and S. B. Rhee, Polymer Bulletin, 35, 129 (1995) https://doi.org/10.1007/BF00312904
  128. S. I. Kim, M. Ree, T. J. Shin, C. Lee, T.-H. Woo, and S. B. Rhee, Polymer, 41, 5173 (2000) https://doi.org/10.1016/S0032-3861(99)00748-X
  129. H. Chang, K. Kim, M. Ree, and K.-W. Lee, Macromol. Chem. Phys., 200, 422 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990201)200:2<422::AID-MACP422>3.0.CO;2-Q
  130. T. J. Shin and M. Ree, Langmuir, 21, 6081 (2005) https://doi.org/10.1021/la050470c
  131. M. Ree, J. Yoon, and K. Heo, J. Mater. Chem., 16, 685 (2006) https://doi.org/10.1039/b511301f
  132. G. L. Slonimskii, A. A. Askadskii, and A. I. Kitaigorodski, Vyskomol. Soyed., A12, 494 (1970)
  133. S. Numata, S. Oohara, K. Fujisaki, J. Imaijumi, and N. Kinjo, J. Appl. Polym. Sci., 31, 101 (1986) https://doi.org/10.1002/app.1986.070310110
  134. K. Yamada, T. Mitsutake, K. Hiroshima, and T. Kajiyama, Proc. 2nd SPSJ Int. Polym. Conf. Tokyo, Aug. 20, 1986, pp. 51
  135. H. G. Rogers, R. A. Gaudiana, W. C. Hollinsed, P. S. Kalyanaraman, J. S. Manello, C. McGowan, R. A. Minns, and R. Sahatjian, Macromolecules, 18, 1058 (1985) https://doi.org/10.1021/ma00148a003
  136. W. Groh and A. Zimmerman, Macromolecules, 24, 6660 (1991) https://doi.org/10.1021/ma00025a016
  137. J. C. Maxwell, N. Philos. Trans., 155, 459 (1865) https://doi.org/10.1098/rstl.1865.0008
  138. C. C. Ku and R. Liepins (eds.), Electrical Properties of Polymers: Chemical Principles, Hanser, New York, 1987
  139. A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew. Chem. Int. Ed., 37, 403 (1998)
  140. D. Y. Kim, H. N. Cho, and C. Y. Kim, Prog. Polym. Sci., 25, 1089 (2000) https://doi.org/10.1016/S0079-6700(00)00034-4
  141. E. I. Mal'tsev, V. I. Berendyaev, M. A. Brusentseva, A. R. Tameev, V. A. Kolesnokov, A. A. Kozlov, B. V. Kotov, and A. V. Vannikov, Polymer Internl., 42, 404 (1997) https://doi.org/10.1002/(SICI)1097-0126(199704)42:4<404::AID-PI732>3.0.CO;2-B
  142. E. I. Mal'tsev, M. A. Brusentseva, V. A. Kolesnokov, V. I. Berendyaev, B. V. Kotov, and A. V. Vannikov, Appl. Phys. Lett., 71, 3480 (1997) https://doi.org/10.1063/1.120365
  143. A. Wu, T. Akagi, M. Jikei, M.-A. Kakimoto, Y. Imai, S. Ukishima, and Y. Takahashi, Thin Solid Films, 273, 214 (1996) https://doi.org/10.1016/0040-6090(95)06780-9
  144. H.-C. Kim, J.-S. Kim, K.-S. Kim, H.-K. Park, S. Baek, and M. Ree, J. Polym. Sci., Polym. Chem., 42, 825 (2004) https://doi.org/10.1002/pola.11045
  145. J. J. Kim, K.-S. Kim, S. Beak, H. Kim, and M. Ree, J. Polym. Sci., Polym. Chem., 40, 1173 (2002) https://doi.org/10.1002/pola.10187
  146. J.-S. Kim, H. K. Ahn, and M. Ree, Tetrahedron Lett., 46, 277 (2005) https://doi.org/10.1016/j.tetlet.2004.11.054
  147. M. Ree, J.-S. Kim, J. J. Kim, J. Yoon, B. H. Kim, and H. Kim, Tetrahedron Lett., 44, 8211 (2003) https://doi.org/10.1016/j.tetlet.2003.09.070
  148. M. Ree, H. K. Ahn, and H.-K. Park, Korea Patent 0335963 (2002)
  149. M. Ree, H. K. Ahn, and J. J. Kim, Korea Patent 0367719 (2002)
  150. Z. Yang, I. Sokolik, and F. E. Karasz, Macromolecules, 26, 1188 (1993) https://doi.org/10.1021/ma00057a047
  151. J. C. de Mello, H. F. Wittmann, and R. H. Friend, Adv. Mater., 9, 230 (1997) https://doi.org/10.1002/adma.19970090308
  152. E. D. Wachsman and C. W. Frank, Polymer, 29, 1191 (1988) https://doi.org/10.1016/0032-3861(88)90043-2
  153. M. Hasegawa, H. Arai, I. Mita, and R. Yokota, Polym. J., 22, 875 (1990) https://doi.org/10.1295/polymj.22.875
  154. J.-W. Yu and C. S. P. Sung, Macromolecules, 30, 1845 (1997) https://doi.org/10.1021/ma961748y
  155. P. J. Collings and J. S. Patel, Eds. Handbook of Liquid Crystal Research, Oxford University Press, Oxford, 1997
  156. J. Cognard, Alignment of Liquid Crystals and Their Mixtures, Gorden & Breach, London, 1982
  157. S. W. Lee, B. Chae, S. G. Hahm, B. Lee, S.B. Kim, and M. Ree, Polymer, 45, 4068 (2005)
  158. S. W. Lee, H. C. Kim, B. Lee, T. Chang, and M. Ree, Mac romolecules, 36, 9905 (2003) https://doi.org/10.1021/ma035258z
  159. S. W. Lee, B. Chae, H. C. Kim, B. Lee, W. Choi, S. B. Kim, T. Chang, and M. Ree, Langmuir, 19, 8735 (2003) https://doi.org/10.1021/la034883u
  160. K.-W. Lee, S.-H. Paek, A. Lien, C. During, and H. Fukuro, Macromolecules, 29, 8894 (1996) https://doi.org/10.1021/ma960683w
  161. S. I. Kim, M. Ree, T. J. Shin, and J. C. Jung, J. Polym. Sci.; Part A: Polym. Chem., 37, 2909 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2909::AID-POLA24>3.0.CO;2-B
  162. J. H. Park, J. C. Jung, B. H. Sohn, S. W. Lee, and M. Ree, J. Polym. Sci., Polym. Chem., 39, 3622 (2001) https://doi.org/10.1002/pola.10010
  163. J. H. Park, B. H. Sohn, J. C. Jung, S. W. Lee, and M. Ree, J. Polym. Sci., Polym. Chem., 39, 1800 (2001) https://doi.org/10.1002/pola.1157
  164. S. W. Lee, S. I. Kim, Y. H. Park, M. Ree, K. H. Lee, and J. C. Jung, Mol. Cryst. Liq. Cryst., 368, 4327 (2001)
  165. S. W. Lee, S. I. Kim, Y. H. Park, M. Ree, Y. N. Rim, H. J. Yoon, and Y. B. Kim, Mol. Cryst. Liq. Cryst., 349, 279 (2000) https://doi.org/10.1080/10587250008024919
  166. S. I. Kim, T. J. Shin, M. Ree, and J. C. Jung, J. Soc. Inform. Display, 8, 61 (2000) https://doi.org/10.1889/1.1828703
  167. J. C. Jung, K. H. Lee, B. H. Sohn, S. W. Lee, and M. Ree, Macromol. Symp., 164, 227 (2001)
  168. S. I. Kim, S. M. Pyo, M. Ree, M. Park, and Y. Kim, Mol. Cryst. Liq. Cryst., 316, 209 (1998) https://doi.org/10.1080/10587259808044493
  169. N. B. Colthup, L. H. Daly, and S. E. Wiberiey, eds., Introduction to Infrared and Raman Spectroscopy, Academic, New York, 1996
  170. W. G. Dauben and W. W. Epstein, J. Org. Chem., 24, 1595 (1959) https://doi.org/10.1021/jo01092a623
  171. L. J. Bellamy, B. R. Connelly, A. R. Philpotts, and R. L. Z. Williams, Elektrochem., 64, 563 (1960)
  172. D. W. Berreman, Phys. Rev. Lett., 28, 1683 (1972) https://doi.org/10.1103/PhysRevLett.28.1683
  173. D. W. Berreman, Mol. Cryst. Liq. Cryst., 23, 215 (1973) https://doi.org/10.1080/15421407308083374
  174. P. G. de Gennes, Physics of Liquid Crystals, W. Marshall and D. H. Wilkinson, Eds., Clarendon, Oxford, 1974, Chap. 3
  175. E. S. Lee, P. Vetter, T. Miyashita, T. Uchida, M. Kano, M. Abe, and K. Sugawara, Jpn. J. Appl. Phys., 32, L1436 (1993) https://doi.org/10.1143/JJAP.32.L1436
  176. A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, J. Vac. Sci. Technol. A, 14, 1723 (1996) https://doi.org/10.1116/1.580327
  177. J. Kim and S. Kumar, Phys. Rev. E, 57, 5644 (1998) https://doi.org/10.1103/PhysRevE.57.5644
  178. T. Uchida, M. Hirano, and H. Sakai, Liq. Cryst., 231, 95 (1989)
  179. J. A. Castellano, Mol. Cryst. Liq. Cryst., 94, 33 (1983) https://doi.org/10.1080/00268948308084245
  180. M. E. Becker, R. A. Killan, B. B. Kosmowski, and D. A. Mlynski, Mol. Cryst. Liq. Cryst., 132, 167 (1986) https://doi.org/10.1080/00268948608079537
  181. V. G. Nazarenko and O. D. Lavrentovich, Phys. Rev. E., 49, R990 (1994) https://doi.org/10.1103/PhysRevE.49.R990
  182. D. Johannsmann, H. Zhou, P. Sonderkaer, H. Wierenga, B. O. Myrvold, and Y. R. Shen, Phys. Rev. E, 48, 1889 (1993) https://doi.org/10.1103/PhysRevE.48.1889
  183. G. Durand, Physica A, 163, 94 (1990) https://doi.org/10.1016/0378-4371(90)90318-M
  184. G. Barbero, L. R. Evangelista, and N. V. Madhusudana, Eur. Phys. J., 1, 327 (1998) https://doi.org/10.1007/s100510050190
  185. T. Sugiyama, S. Kuniyash, D.S. Seo, F. Hiroyoshi, and S. Kobayashi, Jpn. J. Appl. Phys., 29, 2045 (1990) https://doi.org/10.1143/JJAP.29.2045
  186. K. Sakamoto, R. Arafune, N. Ito, S. Ushioda, Y. Suzuki, and S. Morokawa, Jpn. J. Appl. Phys., 33, L1323 (1994) https://doi.org/10.1143/JJAP.33.L1323
  187. K. Sakamoto, R. Arafune, and S. Ushioda, Appl. Spectrosc., 51, 541 (1997) https://doi.org/10.1366/0003702971938966
  188. R. Arafune, K. Sakamoto, S. Ushioda, S. Tanioka, and S. Murata, Phys. Rev. E, 58, 5914 (1998) https://doi.org/10.1103/PhysRevE.58.5914
  189. K. Sakamoto, R. Arafune, N. Ito, S. Ushioda, Y. Suzuki, and S. Morokawa, J. Appl. Phys., 80, 431 (1996) https://doi.org/10.1063/1.362744
  190. B. Chae, S. B. Kim, S. W. Lee, S. I. Kim, W. Choi, B. Lee, M. Ree, K. H. Lee, and J. C. Jung, Macromolecules, 35, 10119 (2002) https://doi.org/10.1021/ma020639i
  191. S. W. Lee, S. J. Lee, S. G. Hahm, T. J. Lee, B. Lee, B. Chae, S. B. Kim, J. C. Jung, W. C. Zin, B. H. Sohn, and M. Ree, Macromolecules, 39, 4331 (2005)
  192. S.W. Lee and M. Ree, J. Polym. Sci., Polym. Chem., 42, 1322 (2004) https://doi.org/10.1002/pola.11059
  193. B. Chae, S. W. Lee, S. B. Kim, B. Lee, and M. Ree, Langmuir, 19, 6039 (2003) https://doi.org/10.1021/la0340596
  194. B. Chae, S. W. Lee, Y. M. Jung, M. Ree, and S. B. Kim, Langmuir, 19, 687 (2003) https://doi.org/10.1021/la020453c
  195. B. Chae, S. W. Lee, M. Ree, and S. B. Kim, Vibrational Spectro., 29, 69 (2002) https://doi.org/10.1016/S0924-2031(01)00181-3
  196. M. Ree, S. W. Lee, and W. Choi, Korea Patent 0499270 (2005)
  197. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, Jpn. J. Appl. Phys., 31, 2115 (1992)
  198. M. Schadt, M. Seiberle, A. Schuster, and S. M. Kelly, Jpn. J. Appl. Phys., 34, L764 (1995) https://doi.org/10.1143/JJAP.34.L764
  199. M. Schadt, H. Seiberle, and A. Schuster, Nature, 381, 212 (1996) https://doi.org/10.1038/381212a0
  200. M. O'Neill and S. M. Kelly, J. Phys. D: Appl. Phys., 33, R67 (2000) https://doi.org/10.1088/0022-3727/33/10/201
  201. K. Ichimura, Chem. Rev., 100, 1847 (2000) https://doi.org/10.1021/cr980079e
  202. K. Ichimura, Y. Akita, H. Akiyama, K. Kudo, and Y. Hayashi, Macromolecules, 30, 903 (1997) https://doi.org/10.1021/ma961225q
  203. Y. Iimura, S. Kobayashi, T. Hashimoto, T. Sugiyama, and K. Katoh, HEICE Trans. Electron. E, 39, 1040 (1996)
  204. K. Y. Han, B. H. Chae, S. H. Yu, J. K. Song, J. G. Park, and D. Y. Kim, AM-LCD'96/IDW'96, 403 (1996)
  205. M. Vilfan, I. D. Olenik, A. Mertelj, and M. Copic, Phys. Rev. E, 63, 061709 (2001) https://doi.org/10.1103/PhysRevE.63.061709
  206. N. Klopcar, I. D. Olenik, M. Copic, M. W. Kim, A. Rastegar, and Th. Rasing, Mol. Cryst. Liq. Cryst., 368, 395 (2001) https://doi.org/10.1080/10587250108029970
  207. X. T. Li, D. H. Pei, S. Kobayash, and Y. Iimura, Jpn. J. Appl. Phys., 36, L432 (1997) https://doi.org/10.1143/JJAP.36.L432
  208. J.-W. Lee, H.-T. Kim, S.-J. Sung, and J.-K. Park, Synth. Metals, 117, 267 (2001) https://doi.org/10.1016/S0379-6779(00)00382-9
  209. E. J. Kim, O O. Park, L. H. Feng, Y. Kawanami, H. Furue, and S. Kobayashi, AM-LCD'97/IDW'97, 105 (1997)
  210. R. Yamaguchi, Y. Goto, and S. Sato, Jpn. J. Appl. Phys., 41, L889 (2002) https://doi.org/10.1143/JJAP.41.L889
  211. L. M. Minsk, J. G. Smith, W. P. van Deusen, and J. F. Wright, J. Appl. Polym. Sci., 2, 302 (1958) https://doi.org/10.1002/app.1959.070020607
  212. Y. B. Kim, H. Olin, S. Y. Park, J. W. Choi, L. Komitov, M. Matuszczyk, and S. T. Lagerwall, Appl. Phys. Lett., 66, 2218 (1995) https://doi.org/10.1063/1.113172
  213. Y. B. Kim and B. S. Ban, Liquid Crystals, 26, 1579 (1999) https://doi.org/10.1080/026782999203553
  214. B. Lee, W. Oh, J. Yoon, Y. Hwang, J. Kim, B. G. Landes, J. P. Quintana, and M. Ree, Macromolecules, 38, 8991 (2005) https://doi.org/10.1021/ma0501951
  215. J.-S. Kim, H.-C. Kim, B. Lee, and M. Ree, Polymer, 46, 7394 (2005) https://doi.org/10.1016/j.polymer.2005.06.024
  216. B. Lee, J. Yoon, W. Oh, Y. Hwang, K. Heo, K. S. Jin, J. Kim, K.-W. Kim, and M. Ree, Macromolecules, 38, 3395 (2005) https://doi.org/10.1021/ma048214e
  217. B. Lee, W. Oh, Y. Hwang, Y.-H. Park, J. Yoon, K. S. Jin, K. Heo, J. Kim, K.-W. Kim, and M. Ree, Adv. Mater., 17, 696 (2005) https://doi.org/10.1002/adma.200400919
  218. B. Lee, Y.-H. Park, Y.-T. Hwang, W. Oh, J. Yoon, and M Ree, Nat. Mater., 4, 147 (2005) https://doi.org/10.1038/nmat1291
  219. W. Oh, Y.-T. Hwang, Y. H. Park, M. Ree, S.-H. Chu, K. Char, J. K. Lee, and S. Y. Kim, Polymer, 44, 2519 (2003) https://doi.org/10.1016/S0032-3861(03)00129-0
  220. J. Bolze, M. Ree, H. S. Youn, S. H. Chu, and K. Char, Langmuir, 17, 6683 (2001) https://doi.org/10.1021/la010451c
  221. M. Ree and W. Oh, Korea Patent 0397372 (2003)
  222. M. Ree and W. Oh, Korea Patent Application 2000-53707 (2000)
  223. M. Ree and W. Oh, Korea Patent 0378253 (2003)
  224. M. Ree, W. Oh, Y. Hwang, and B. Lee, PCT/KR2004/002104 (2004)
  225. M. Ree, J.-S. Kim, B. Lee, J. Yoon, and K. S. Jin, PCT/KR2005/001053, April 12, 2005
  226. M. Ree, W. Oh, Y. Hwang, and B. Lee, Korea Patent Application 2003-0041384 (2003)
  227. M. Ree, W. Oh, Y. Hwang, and B. Lee, PCT/KR2004/000316, July 15, 2004
  228. M. Ree, W. Oh, Y. Hwang, and B. Lee, German Patent Application 112004000058.0 (2005)
  229. M. Ree, J.-S. Kim, B. Lee, H. Yoon, K.S. Jin, and K. Heo, PCT/KR2005/001053, April, 12, 2005