• Title/Summary/Keyword: Dielectric barrier discharge (DBD)

Search Result 167, Processing Time 0.034 seconds

A Study on the Microorganism Disinfection and Characteristics of Discharged Water of Dielectric Barrier Discharge Plasma Systems (유전체 장벽 방전 플라즈마 방전수의 특성과 미생물 소독에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.159-165
    • /
    • 2012
  • Objectives: This experiment was carried out to elucidate the effect of discharged water on the disinfection of $Phytophthora$ $capsici$ and evaluate the water characteristics. Methods: The dielectric barrier discharges (DBD) plasma reactor system used in this study consisted of a plasma component [discharge, ground electrode and quartz dielectric tube], high voltage source, and air supply. The effects of water characteristics such as pH, ORP and conductivity and the disinfection effect of discharged water were investigated. Results: Experimental results showed that in the process of discharge, the pH decreased, whereas ORP and electric conductivity increased. When the discharge time was 30 min, $Phytophthora$ $capsici$ of 2.94 log was disinfected within 300 seconds. Disinfection performance of stored discharged water was maintained for three days; however the disinfection effect vanished after five days. When $Phytophthora$ $capsici$ was injected into the discharged water, the disinfection effect decreased after two days. Conclusions: It is considered that the main disinfection parameters of the discharged water were chemically active species such as $H_2O_2$ and $O_3$ and high ORP.

A study of the space sterilization device using atmospheric-pressure DBDs plasma (대기압 유전체장벽방전을 적용한 플라즈마오존 공간살균장치에 관한 연구)

  • Oh, Hee-Su;Lee, Kang-yeon;Park, Ju-Hoon;Jeong, Byeong-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.281-289
    • /
    • 2022
  • Plasma ozone is utilized in a variety of applications in the field of sterilization due to its high sterilization performance. Dielectric materials used in DBD(dielectric barrier discharges) are mainly polymer, quartz and ceramics. These dielectric layers have the advantage of limiting the amount of supplied electron charge and allowing plasma to occur evenly on the surface of dielectric. Actually, the target or environment for sterilization is often a complex structure, so research and academic study are needed by utilizing the concept of space sterilization. In this study, the device is applied to generate DBD plasma at atmospheric pressure for disinfection due to the effectiveness in producing radicals and ozone. The generator of plasma ozone is a basic structure of dielectric barrier discharge by placing ceramic tube dielectrics and stainless steel electrical conductors at regular intervals. Various applications can be developed based on the proposed design method. Plasma ozone generation for space sterilization device is recognized as an excellent sterilization device. Through the design and verification of the device, we intend to establish an optimal design of the spatial sterilization device and provide the basis data for sterilization applications.

Properties of N doped ZnO grown by DBD-PLD (DBD-PLD 방법을 이용하여 N 도핑된 ZnO 박막의 특성 조사)

  • Leem, Jae-Hyeon;Kang, Min-Seok;Song, Wong-Won;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.15-16
    • /
    • 2008
  • We have grown N-doped ZnO thin films on sapphire substrate by employing dielectric barrier discharge in pulsed laser deposition (DBD-PLD). DBD guarantees an effective way for massive in-situ generation of N-plasma under the conventional PLD process condition. Low-temperature photoluminescence spectra of the N-doped ZnO film provided near band-edge emission after thermal annealing process. The emission peak was resolved by Gaussian fitting and showed a dominant acceptor-bound exciton peak ($A^0X$) that indicated the successful p-type doping of ZnO with N.

  • PDF

Particle-in-Cell Simulation for the Control of Electron Energy Probability & Electron temperature of Dielectric Barrier Discharges at Atmospheric Pressure

  • Lee, Jung-Yel;Song, In-Cheol;Lee, Ho-Jun;Lee, Hae-June
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.528-528
    • /
    • 2012
  • Recently, atmospheric pressure plasmas attract lots of interests for the useful applications such as surface modification and bio-medical treatment. In this study, a particle-in-cell Monte Carlo collision (PIC-MCC) simulation was adopted to investigate the discharge characteristics of a planar micro dielectric barrier discharge (DBD) with a driving frequency from 13.56 MHz to 162.72 MHz and with a gap distance of 80 micrometers. The variation of frequency, in the change in the electron energy probability function (EEPF). Through the relation between the ion trajectories and the frequency, results in the change of EEPFs is achievable with the turning point of frequency mode. Therefore, it is possible to categorize the efficient operation range of DBDs for its applications by controlling the interactions between plasmas and neutral gas for the generation of preferable radicals.

  • PDF

The Dielectric Barrier micro-hollow cathode structure and its upper pD limitation in alternative current driving for flat panel light source (광원을 위한 AC구동 유전체장벽 미세공음극 구조와 상한 pd 제한조건)

  • Park K. W.;Lee T. I.;Jegal J. P.;Baik H. K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.45-47
    • /
    • 2005
  • The Dielectric Barrier micro-hollow cathode structure and it's upper pD limitation are investigated for determining of optimum hollow cathode discharge condition. In experiment, discharge is sustained by AC diriving and investigated gas is pure Xe. From Experiment, Optimum pD range is lower than 0.72 torr.cm at pure Xe and Cu cathode.

  • PDF

Ar DBD 플라즈마의 ROS가 히드라 출아에 미치는 영향

  • Jeong, Gwan-Ho;Hwang, Chang-Ha;Byeon, Ji-Hyeon;Im, Jun-Seop;Nam, Cheol-Ju;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.208.1-208.1
    • /
    • 2016
  • 히드라란 단세포 생물로써 강장동물에 속한다. 촉수가 많이 있으며, 그 촉수에는 독이 있다. 번식 방식으로는 출아법을 이용한다. 출아를 할 때에는 한 마리가 아닌 여러 마리의 히드라가 동시에 출아를 하기도 하며, 출아를 하고 있는 히드라는 촉수가 들어난 순간부터 먹이 섭취가 가능해진다. 이 출아법을 이용하여 번식을 하는 히드라가 DBD처리를 했을 시, 히드라 출아에 차이를 보인다면 다른 생물에게도 DBD 처리를 했을 시, 영향을 미친다고 생각하고 실험을 진행하였다. DBD(Dielectric Barrier Discharge)는 두 전극 사이에 유전체층이 있으며, 외부에서 교류 전압을 가해준다. 그러면 유전체 사이에서 방전이 발생되는데, 방전된 것을 플라즈마라고 한다. DBD라는 유전체 장벽 방전으로써 주위를 이온화 시켜 만드는 플라즈마에 유전체를 씌어 생물에게 최대한 해가 되지 않도록 만든 것이다. 유전체 장벽 방전에ROS(Reactive Oxygen Species)라는 산소와 결합된 기체들이 생성된다. DBD로 인해서 생성되는 ROS를 히드라에 처리했을 경우 히드라 출아수에 변화를 통해서 해를 끼치는 정도를 알아보고자 하였다. 그 결과 아르곤 기체에 의한 ROS로 처리한 히드라는 대조군 보다 히드라의 출아수의 변화가 있는 것으로 관찰되었고, 공기를 이용하여 방전한 DBD의 ROS로 처리한 히드라는 대조 군과 비교하여 큰 변화가 없어 보였다. 따라서 아르곤 대기압 DBD플라즈마를 이용하여 만든 ROS가 히드라에게 직접적인 영향을 준 것으로 보였다. 이 결과를 토대로 아르곤DBD를 이용한 ROS 처리는 생물에게 영향을 줄 수 있다는 것을 이 실험을 통해 간접적으로 확인해 볼 수 있었다.

  • PDF

Helium dielectric barrier discharge-cold plasma treatment for microbiological safety and preservation of onion powder (유전체 방벽 방전 콜드 플라즈마 기술을 이용한 양파 분말 미생물 안전성 향상 및 품질 보존)

  • Won, Mee Yeon;Choi, Ha Young;Lee, Kwang Sik;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.486-491
    • /
    • 2016
  • Efficacy of dielectric barrier discharge-cold plasma treatment (DBD-CPT) for microbial decontamination of onion powder was evaluated. Onion powder, inoculated with Escherichia coli O157:H7, Salmonella Enteritidis, or Listeria monocytogenes, was treated with helium DBD-CPT. DBD-CPT (9 kV, 20 min) inhibited E. coli O157:H7, S. Enteritidis, and L. monocytogenes by $1.4{\pm}0.5$, $2.3{\pm}0.3$, and $1.2{\pm}0.0log\;CFU/cm^2$, respectively. The inactivation levels of E. coli O157:H7, S. Enteritidis and L. monocytogenes increased by $2.2{\pm}0.1$, $2.5{\pm}0.1$ and $1.9{\pm}0.3log\;CFU/cm^2$, respectively, as water activity increased from 0.4 to 0.8, and increased by $2.3{\pm}0.4$, $2.1{\pm}0.1$ and $1.6{\pm}0.1log\;CFU/cm^2$, respectively, as the particle size increased from 0.3 to $1.0cm^2$. Neither the ascorbic acid and quercetin concentrations nor the color of onion powder was changed by DBD-CPT (p>0.05). These results demonstrate the potential for application of DBD-CPT in improving microbiological safety of onion powder while preserving the physicochemical properties.

Inactivation of Ralstonia Solanacearum Using Aquatic Plasma Process (수중 Plasma 공정을 이용한 Ralstonia Solanacearum 불활성화)

  • Back, Sang-Eun;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.797-804
    • /
    • 2012
  • A dielectric barrier discharge (DBD) plasma reactor was investigated for the inactivation of Ralstonia Solanacearum which causes bacterial wilt in aquiculture. The DBD plasma reactor of this study was divided into power supply unit, gas supply unit and plasma reactor. The plasma reactor consisted of a quartz dielectric tube, discharge electrode (inner) and ground electrode (outer). The experimental results showed that the optimum 1st voltage, 2nd voltage, air flow rate and pH were for 100 V (1st voltage), 15 kV (2nd voltage), 4 L/min, and pH 3, respectively. At a low 1st voltage, shoulder and tailing off phenomena was observed. The shoulder phenomenon was decreased as the increase of 1st voltage. R. Solanacearum disinfection in the lower air flow rate was showed shoulder and tailing off phenomenon because the active species generated less. Under optimum condition, shoulder and tailing off phenomenon was reduced. When the 2nd voltage was less than 7.5 kV, tailing off phenomenon was observed and this was not vanishes even though the increase of the disinfection time. The inactivation efficiency increased as the increase of air flow rate, however, the efficiency decreased when the air flow rate was above 4 L/min. R. Solanacearum disinfection at pH 3 showed somewhat higher than in pH 11. The pH effect of R. Solanacearum deactivation is less than the impact on other factor.

Stability enhancement of armorphous znic oxide thin film transistors fabricated by pulsed laser deposition with DBD (PLD-DBD 공정으로 제작된 비정질 Zn 산화물 박막트랜지스터의 안정성 향상)

  • Chun, Yoon-Soo;Chong, Eu-Gene;Jo, Kyoung-Chol;Kim, Seung-Han;Jung, Da-Woon;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.391-391
    • /
    • 2010
  • The stability enhancement of Znic oxide thin film transistor deposited by PLD-DBD has been reported here using the bias temperature stress test. Znic oxide (ZnO) thin films were deposited on $SiO_2$/Si (100) by pulsed laser deposition method with and without dielectric barrier discharge (DBD) method. The DBD is the efficient method to adopt the nitrogen ions into the thin films. The TFT characteristics of ZnO TFTs with and without Nirogen (N) doping show similar results with $I_{on/off}$ of $10^5{\sim}10^6$. However. the bias temperature stress (BTS) test of N-doped ZnO TFT with DBD shows higher stability than that of ZnO TFT.

  • PDF

Time Dependent Interaction between Electromagnetic Wave and Dielectric Barrier Discharge Plasma Using Fluid Model (유체 모델을 이용한 유전체 장벽 방전 플라즈마와 전자기파 간의 시간 의존적 상호 작용 분석)

  • Kim, Yuna;Oh, Il-Young;Jung, Inkyun;Hong, Yongjun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.857-863
    • /
    • 2014
  • In determining interaction between plasma and electromagnetic wave, plasma frequency and collision frequency are two key parameters. They are derived from electron density and temperature, which vary in an extremely wide range, depending on a plasma generator. Because the parameters are usually unknown, traditional researches have utilized simplified electron density model and constant electron temperature approximation. Introduction of plasma fluid model to electromagnetics is suggested to utilize relatively precise time dependent variables for given generator. Dielectric barrier discharge(DBD) generator is selected due to its simple geometry which allows us to use one dimensional analysis. Time dependent property is analyzed when microwave is launched toward parallel plate DBD plasma. Afterwards, attenuation tendency with the change of electron density and temperature is demonstrated.