• Title/Summary/Keyword: Dielectric Resonator Oscillator

Search Result 88, Processing Time 0.023 seconds

Output Power Improvement of Push-Push FET DRO with an Additional DR (DR 2개를 이용한 Push-Push FET DRO의 출력 증가)

  • Kim, Ihn S.;Jo, Chisung;Han, Yongin
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • In this paper, the output power level and phase noise property of nine conventional push-push FET DROs (Dielectric Resonator Oscillator) have been experimentally investigated by adding one more identical DR at the drain port. The nine oscillators designed to generate 20 GHz from 10 GHz fundamental frequency, have been tested for each of three different power combiners at the output port. It has been observed that the output power level of the push-push FET DROs can be improved by placing the DR while maintaining their phase noise characteristics were approximately the same as before adding the DR.

  • PDF

Design and Fabrication of the Push-push Dielectric Resonator Oscillator using a LTCC (LTCC를 이용한 push-push 유전체 공진 발진기의 설계 및 제작)

  • Ryu, Keun-Kwan;Oh, Eel-Deok;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.541-546
    • /
    • 2010
  • The push-push DRO(dielectric resonator oscillator) using a multi-layer structure of LTCC(low temperature co-fired ceramic) fabrication is designed. After the single DRO of series feedback type in the center frequency of 8GHz is designed, the push-push DRO in the center frequency of 16GHz including the Wilkinson power combiner is designed. The bias circuit affecting the size of oscillator are embedded in the intermediate layer of the LTCC multi-layer substrate. As a result, the large reduction in the size of VCO is obtained compared to the general oscillator on the single layer substrate. Experimental results show that the fundamental and third harmonics suppression are above 15dBc and 25dBc, respectively, and phase noise characteristics of the push-push DRO presents performance of -102dBc/Hz@100KHz and -128dBc/Hz@1MHz offset frequencies from carrier.

A Study on the Design and Implementation of the Oscillator Using a Miniaturized Hairpin Ring Resonator (소형화된 헤어핀 링 공진기를 이용한 발진기 설계 및 제작에 관한 연구)

  • Kim, Jang-Gu;Choi, Byoung-Ha
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • In this paper, an S-band oscillator of the low phase noise property using miniaturized microstrip hairpin shaped ring resonator has been designed and implemented. The TACONIC's RF-35 substrate has a dielectric constant ${\varepsilon}_r$=3.5 a thickness h=20mil a copper thickness t=17 um and loss tangent $tan{\delta}$=0.0025. The designed and implemented 2.45 GHz oscillator shows low phase performance of -100.5 dBc/Hz a 100kHz offset. Output power 20.9 dBm at center frequency 2.45 GHz and harmonic suppression -32 dBc. The circuit was implemented with hybrid technique. But can be fully compatible with the RFIC's, MIC and MMIC due to its entirely planar structure.

  • PDF

Design and Realization of 20 GHz Push-Push FET Dielectric Resonator Oscillator (20 GHz Push-Push FET 유전체 공진기 발진기 설계 및 실현)

  • Jung, Jae Kwon;Kim, Ihn Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.1
    • /
    • pp.52-62
    • /
    • 2002
  • Electrical characteristics of two types of 20 GHz Push-Push GaAs MESFET dielectric resonator oscillators having Wilkinson and T-junction power combiners for the output stage have been investigated. The Push-Push oscillator for suppressing fundamental frequency 10 GHz and enhancing 20 GHz has been designed and realized in microstrip configuration on 20 mil thick RT-Duroid(${\varepsilon}_r$=2.52) teflon substrate. Two different types of power combiners, T-junction and Wilkinson, have been considered. Whenever one type of the combiners has been adopted for the output circuit, output power, phase noise and fundamental frequency suppression characteristics of the oscillator have been measured. When the Wilkinson power combiner was used, a maximum output power of 5.67 dBm, a phase noise of -105.5 dBc/Hz at an offset frequency of 100 kHz and a fundamental frequency suppression of -29.33 dBc have been measured. When the T-junction power combiner was used, a maximum output power of -1.17 dBm, a phase noise of -102.2 dBc/Hz at an offset frequency of 100 kHz and a fundamental frequency suppression of -17.84 dBc have been measured.

  • PDF

Development of EQM(Engineering Qualified Model) Local Oscillator far Ka-band Satellite Transponder (Ka-band위성 중계기용 국부발진기의 우주인증모델(EQM) 개발)

  • 류근관;이문규;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.335-344
    • /
    • 2004
  • A low phase noise EQM(Engineering Qualified Model) LO(Local Oscillator) has been developed for Ka-band satellite transponder. A VCDRO(Voltage Controlled Dielectric Resonator Oscillator) is also designed using a high impedance inverter coupled with dielectric resonator to improve the phase noise performances out of the loop bandwidth. The mechanical analysis fur housing and the thermal analysis fur circuit board are achieved. This EQM LO is applied to Ka-band satellite transponder of EQM level after environmental experiments for space application. The LO has the harmonic suppression characteristics above 52 ㏈c and requires low power consumption under 1.3 watts. The phase noise characteristics are exhibited as -101.33 ㏈c/㎐ at 10 ㎑ offset frequency and -114.33 ㏈c/㎐ at 100 ㎑ offset frequency, with the output power of 14.0 ㏈m${\pm}$0.17 ㏈ over the temperature range of -15∼+65$^{\circ}C$.

Design of Phase Locking Loopfilter Using Sampling Phase Detector for Ku-Band Dielectric Resonator Oscillator (Ku-대역 유전체 공진기 발진기의 Sampling Phase Detector를 이용한 위상 고정 루프 필터 설계 및 제작)

  • Badamgarav, O.;Yang, Seong-Sik;Oh, Hyun-Seok;Lee, Man-Hee;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1147-1158
    • /
    • 2008
  • In this paper, we designed a phase-looking circuit that locks the 16.8 GHz VTDRO to a 700 MHz SAW oscillator using SPD as a phase detector Direct phase locking with loop filter alone causes the problem of lock time, so VTDRO is phase leered by loop filter with the aid of time varying square wave current generator. The current generator is related to the loop filter and needs the systematic toning. In this paper, a systematic design of the current generator and loop filter is presented. The fabricated PLDRO shows a stabilized frequency of 16.8 GHz, a output power 6.3 dBm, and a phase noise of -101 dBc/Hz at the 100 kHz offset.

Design of a Low Phase Noise Vt-DRO Based on Improvement of Dielectric Resonator Coupling Structure (유전체 공진기 결합 구조 개선을 통한 저위상 잡음 전압 제어 유전체 공진기 발진기 설계)

  • Son, Beom-Ik;Jeong, Hae-Chang;Lee, Seok-Jeong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.691-699
    • /
    • 2012
  • In this paper, we present a Vt-DRO with a low phase noise, which is achieved by improving the coupling structure between the dielectric resonator and microstrip line. The Vt-DRO is a closed-loop type and is composed of 3 blocks; dielectric resonator, phase shifter, and amplifier. We propose a mathematical estimation method of phase noise, using the group delay of the resonator. By modifying the coupling structure between the dielectric resonator and microstrip line, we achieved a group delay of 53 nsec. For convenience of measurement, wafer probes were inserted at each stage to measure the S-parameters of each block. The measured S-parameter of the Vt-DRO satisfies the open-loop oscillation condition. The Vt-DRO was implemented by connecting the input and output of the designed open-loop to form a closed-loop. As a result, the phase noise of the Vt-DRO was measured as -132.7 dBc/Hz(@ 100 kHz offset frequency), which approximates the predicted result at the center frequency of 5.3 GHz. The tuning-range of the Vt-DRO is about 5 MHz for tuning voltage of 0~10 V and the power is 4.5 dBm. PFTN-FOM is -31 dBm.

A Study on the Fabrication of K-band Local Oscillator Used Frequency Doubler Techniques (주파수 체배 기법을 이용한 K-대역 국부발진기 구현에 관한 연구)

  • 김장구;박창현;최병하
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.109-117
    • /
    • 2004
  • In this paper, a K-band local oscillator composed of a VCDRO(Voltage Controlled Dielectric Resonator Oscillator), GaAs MESFET, and Reflector type frequency doubler has been designed and fabricated. TO obtain a good phase noise performance of a VCDRO, a active device was selected with a low noise figure and a low flicker noise MESFET and a dielectric resonator was used for selecting stable and high oscillation frequency. Especially, to have a higher conversion gain than a conventional doubler as well as a good harmonic suppression performance with circuit size reduced a doubler structure was employed as the Reflector type composed of a reflector and a open stub of quarter wave length for rejecting the unwanted harmonics. The measured results of fabricated oscillator show that the output power was 5.8 dBm at center frequency 12.05 GHz and harmonic suppression -37.98 dBc, Phase noise -114 dBc at 100 KHz offset frequency, respectively, and measured results show of fabricated frequency doubler, the output power at 5.8 dBm of input power is 1.755 dBm conversion gain 1.482 dB, harmonic suppression -33.09 dBc, phase noise -98.23 dBc at 100 KHz offset frequency, respectively. This oscillator could be available to a local oscillator in K-band which used frequency doubler techniques.

Ku-band Voltage Control Dielectric Resonator Oscillator considering Phase Noise (위상잡음 특성을 고려한 Ku-band 용 전압제어 유전체 공진 발진기)

  • 유진혁;권성수;이태호;나극환
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.162-166
    • /
    • 2000
  • 본 논문에서는 Ku-band용 전압제어 유전체 공진 발진기를 위상잡음 특성을 고려하여 설계하였다. 유전체의 높은 Q값은 좋은 위상잡음특성에 영향을 주나 전압제어를 위해 바렉터 다이오드의 연결된 튜닝 마이크로스트립라인의 길이에 따라 Q값의 변화하고 이로 인해 위상잡음 특성이 변화하am로 이를 고려하여 최적의 튜닝 마이크로스트립라인 길이를 시뮬레이션 견과를 통해 얻은 후 전압제어 유진체 발진기를 설계 하였다.

  • PDF

Design of Multi-layer VCO for 960 MHz Band (960 MHz대역 다층구조 VCO 설계)

  • 이동희;정진휘
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.492-498
    • /
    • 2002
  • In this paper, we present the simulation results of multi-layer VCO(voltage controlled oscillator), which is composed of resonator, oscillator, and buffer circuit, using EM simulator and nonlinear RF circuit simulator. EM simulator is used for obtaining the EM(Electromagnetic) characteristics of conductor pattern as well as designing the multi-layer VCO. Obtained EM characteristics were used as real components in nonlinear RF circuit simulation. Finally the overall VCO was simulated by the nonlinear RF circuit simulator. The material for the circuit pattern was Ag and the dielectric was Dupont 951AT, which will be applied for LTCC process. The structure of multi-layer VCO is constructed with 4 conducting layer. Simulated results showed that the output level was about 4.5 [dBm], the phase noise was -104 [dBc/Hz] at 30 [kHz] offset frequency, the harmonics -8 dBc, and the control voltage sensitivity of 30 [MHz/V] with a DC current consumption of 9.5 [mA]. The size of VCO is $6{\times}9{\times}2 mm$(0.11 [cc]).