• 제목/요약/키워드: Die Design Parameter

검색결과 58건 처리시간 0.023초

대면적 롤투롤 슬롯-다이 코팅의 횡 방향 두께 품질 개선을 위한 공정 파라미터 분석 (Parameter Analysis for the Lateral Thickness of the Coated Layer to Improve Product Quality in Large Area Roll-to-Roll Slot-Die Coating Process)

  • 박장훈;이창우
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.159-166
    • /
    • 2015
  • Slot-die coating is well known technique to guarantee a uniformly coated layer and is compatible with roll-to-roll process. In actual roll-to-roll slot-die coating process, the lateral difference of coated layer thickness is observed. An experimental study was performed to improve the coating quality. Coating speed and coating gap were selected as the experimental factors. A full factorial, statistical method was conducted to optimize the process conditions. Based on the results of repeated experiment, the lowest deviation of lateral thickness (700 nm, <10%) was achieved at 10 m/min coating speed and $300{\mu}m$ coating gap. This result has significance because such optimized process guideline can be utilized with all process improvement in various coating applications.

스팀 터빈용 중공 분할형 노즐 정익의 후판 성형을 위한 금형 설계 및 해석적 검증 (Tool Design and Numerical Verification for Thick Plate Forming of Hollow-Partitioned Steam Turbine Nozzle Stator)

  • 강병권;곽봉석;윤만중;전재영;강범수;구태완
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.379-389
    • /
    • 2016
  • As a stator for steam turbine diaphragm, hollow-type nozzle stator to substitute for conventional solid one is introduced in this study. This hollowed stator can be separated into two parts such as upper and lower plates with large and curved surface area. This study focuses on thick plate forming process for the upper plate of the hollow-partitioned nozzle stator. First, to reduce forming defects such as under-cut and localized thinning of the deformed plate, and to avoid tool interruption between forming punch and lower die, tool design including the position determination of forming surfaces is performed. Uni-axial tensile tests are carried out using SUS409L steel plate with initial thickness of 5.00mm, and plastic strain ratio (r-value) is also obtained. Due to the asymmetric curved configuration of the upper plate, it is hard to adopt a series of blank holder or draw-bead, so the initial plate during this thick plate forming experiences unstable and non-uniform contact. To easy this forming difficulty and find suitable tool geometry without sliding behavior of the workpiece in the die cavity, two geometric parameters with respect to each shoulder angle of the lower die and the upper punch are adopted. FE models with consideration of 21 combinations for the geometric parameters are built-up, and numerical simulations are performed. From the simulated and predicted results, it is shown that the geometric parameter combinations with ($30^{\circ}$, $90^{\circ}$) and ($45^{\circ}$, $90^{\circ}$) for the shoulder angle of the lower die and the upper punch are suitably applied to this upper plate forming of the hollow-partitioned nozzle stator used for the turbine diaphragm.

전자회로 일체형 돔 형상의 플라스틱 부품 성형에 관한 연구 (A study on the molding of dome shaped plastic parts embedded with electronic circuits)

  • 성겸손;이호상
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.15-21
    • /
    • 2020
  • Smart systems in different application areas such as automotive, medical and consumer electronics require a novel manufacturing method of electronic, optical and mechanical functions into products. Traditional methods including mechanical assembly, bonding of plastic and electronic circuit cause the problems in large size of products and complicated manufacturing processes. In this study, thermoforming and film insert molding were applied to fabricate a dome shaped plastic part embedded with electronic circuits. The deformation of patterns printed on PET film was predicted by thermoforming simulation using T-SIM, and the results were compared with those by experiment. In order to decrease spring-back after thermoforming, the Taguchi method of design of experiment was used. Through ANOVA analysis, it was found that mold temperature was the most dominant parameter for spring-back. By using flow analysis, gate design was performed to decrease injection pressure. During film insert molding, the wash-out of ink printed on film occurred for Polycarbonate. When the resin was changed to PMMA, the wash-out disappeared due to low melt temperature.

자동차용 부재 금형설계의 공정변수 결정을 위한 CAE 프로세스 적용 (Application of the CAE Process to the Parameter Determination far the Tool Design of an Auto-body Member)

  • 김세호;허훈;송정한
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.64-73
    • /
    • 2005
  • This paper is concerned with the simulation-based parameter determination for the tool design in the stamping process of the complicated auto-body member. The CAE procedure of the stamping process is proposed so that troubles such as wrinkle, springback and excess metal be eliminated with changing parameters such as the blank size, the restraining force of the draw-bead and the embossing shape in the die face. The selected indicators of failure during forming are wrinkling. the amount of spring after unloading of the tool, the amount of excess metal developed .The proposed analysis scheme is applied to the tool and process parameter design for the front side member of a RV car. The simulation results show that the scheme can produce sound product from the viewpoint of thickness distribution, the contact condition between tools and the blank, the shape accuracy and so on.

마이크로 스크류의 해석기반 판형 전조성형공정 연구 (Simulation based Process Design of Flat Die Thread Rolling for Micro Screw)

  • 박기동;송정한;이혜진;이근안;이낙규;이형욱;나승우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.62-65
    • /
    • 2009
  • There have been strong demands for micro size screw with high precision due to miniaturization and integration trends for electronic products such as Hard Disk Drives. The thread rolling process for screw manufacturing are lower unit cost, reduced material utilization, and superior mechanical properties compared to the machining process. But little work has been done on the thread rolling of micro size screw. In this paper, we investigate thread rolling process using Finite Element Analysis (FEA) and parameter study for screw manufacturing. And we also carried out compression tests to obtain the material property and to implement into the FE tool for the numerical simulation. In case that parameter of relative position oldies is half length of pitch for maintaining the continuous thread profiles, we found that shear friction factor was 0.9 during the thread rolling process using FEA. We are trying to develop the thread rolling process using the FE-simulation to manufacture screws which have been commonly produced from the industrial level fabrication at present.

  • PDF

CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계 (Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE)

  • 이형욱;윤덕재;이근안;최석우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

벌칙방법에 의한 마찰 접촉문제의 강소성 유한요소 모델링 (Rigid-Plastic FE Modeling of Frictional Contact Problems based on a Penalty Method)

  • 장동환;황병복
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.34-42
    • /
    • 2003
  • This paper presents a rigid-plastic finite element method to handle the frictional contact problem between two deformable bodies experiencing large deformation. The variational formulation combined with incremental quasi-static model is employed for treating the contact boundary condition. The frictional behavior of the model obeys Coulomb's law of friction. The proposed contact algorithms are classified into two categories, one for searching contacting nodes and the other for calculating contact forces at the contact surface. A slave node and master contact segment are defined using the geometric condition of finite elements on the contact interface. The penalty parameter is used to limit the penetration between contacting bodies, and the finite elements are coupled with contact boundary elements.us gates and cavity thicknesses. Through this study we have observed that the jetting is related to the die swell of material. This means that the jotting is strongly affected by the elastic flow property rather than the viscous flow property in viscoelastic characteristics of molten polymer. Different resins have different elastic properties, and elastic flow behavior depends on the shear rate of flow, i.e. injection speed. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mole design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting regardless of amount of elasticity of polymer melt.

Front Fender LH/RH 일체 금형설계 및 제작에 관한 연구 (The Study on the Design and Manufacturing of Combined Die for Both Sides of Front Fender)

  • 정효상;이성수
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.24-30
    • /
    • 1999
  • In the automobile development, press tool design and manufacturing are very difficult and need high cost experienced workers. Therefore, we concerned ourselves in the cost down and easy manufacturing. In this research, we have developed a tool for LH/RH of the front fender, which had difficulty in forming. We have carried out the drawing analysis by Pam-stamp and CATIA modeling. Finally, we get the optimal design parameter. As a result of try out, we found out the optimal width and margin at the center line for tool design. Also, in order to get good results we have to intaglio margin in the part of the wheel house and utilize double bead on every side except corner.

  • PDF

열간 단조 공정에서 금형 수명 향상을 위한 공정 설계 (Process Design for Improving Tool Life in Hot Forging Process)

  • 이현철;김병민;김광호
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.18-25
    • /
    • 2003
  • This paper explains the process design for improving tool life in the conventional hot forging process. The thermal load and the thermal softening are happened by contact between the hotter billet and the cooler tools in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool was caused by a high thermal load and long contact time between the tools and the billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affect die accuracy and tool life we wear and the plastic deformation of a tool. The newly developed techniques for predicting tool life are applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process.

다구찌법을 이용한 테일러드 블랭크의 신장플랜지 성형에 미치는 설계 인자의 영향 분석 (Effects of Blank Design factors on Stretch Flange Forming of the Tailored Blank Using Taguchi Method)

  • 백승엽;권재욱;이경돈
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.339-347
    • /
    • 2000
  • For the successful forming of tailored blank, it is important to control the deformation of the stretch flange mode, which is strong1y dependent upon the location of weld line and blank shape. In order to investigate the effects of tailored blank design factors on the stretch flange forming, we made the model die which can simulate stretch flange mode. Taguchi method was employed to analyze the sensitivity of blank design factors for the forming of tailored blank. From the results of experiment S/N ratios were calculated and using Variance Analysis, significance of parameters and optimal condition of each factors were extracted. Based on these analyses, the weld line height and the strength ratio and the arc center height were selected as effective parameter. The analysed result was practically applied for Side outer panel stamping process.

  • PDF