Venous puncture is widely used to obtain blood samples for pathological examination. Because the invasive venipuncture method using a needle is repeatedly performed, the pain suffered by the patient increases, so our research team pre-developed a miniaturized near-infrared (NIR) imaging system in advance. To improve the image quality of the acquired NIR images, this study aims to model the non-local means (NLM) algorithm, which is well known to be efficient in noise reduction, and analyze its applicability in the system. The developed NIR imaging system is based on the principle that infrared rays pass through dichroic and long-pass filters and are detected by a CMOS sensor module. The proposed NLM algorithm is modeled based on the principle of replacing the pixel from which noise is to be removed with a value that reflects the distances between surrounding pixels. After acquiring an NIR image with a central wavelength of 850 nm, the NLM algorithm was applied to segment the final vein area through histogram equalization. As a result, the coefficient of variation of the NIR image of the vein using the NLM algorithm was 0.247 on average, which was an excellent result compared to conventional filtering methods. In addition, the dice similarity coefficient value of the NLM algorithm was improved by 62.91 and 9.40%, respectively, compared to the median filter and total variation methods. In conclusion, we demonstrated that the NLM algorithm can acquire accurate segmentation of veins acquired with a NIR imaging system.
Author resolution is to disambiguate same-name author occurrences into real individuals. For this, pair-wise author similarities are computed for author name entities, and then clustering is performed. So far, many studies have employed hierarchical clustering techniques for author disambiguation. However, various hierarchical clustering methods have not been sufficiently investigated. This study covers an empirical evaluation and analysis of hierarchical clustering applied to Korean author resolution, using multiple distance functions such as Dice coefficient, Cosine similarity, Euclidean distance, Jaccard coefficient, Pearson correlation coefficient.
Da Hyun Lee;Ji Eun Park;NakYoung Kim;Seo Young Park;Young-Hoon Kim;Young Hyun Cho;Jeong Hoon Kim;Ho Sung Kim
Korean Journal of Radiology
/
v.24
no.3
/
pp.235-246
/
2023
Objective: It is difficult to predict the treatment response of tissue after stereotactic radiosurgery (SRS) because radiation necrosis (RN) and tumor recurrence can coexist. Our study aimed to predict tumor recurrence, including the recurrence site, after SRS of brain metastasis by performing a longitudinal tumor habitat analysis. Materials and Methods: Two consecutive multiparametric MRI examinations were performed for 83 adults (mean age, 59.0 years; range, 27-82 years; 44 male and 39 female) with 103 SRS-treated brain metastases. Tumor habitats based on contrast-enhanced T1- and T2-weighted images (structural habitats) and those based on the apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) images (physiological habitats) were defined using k-means voxel-wise clustering. The reference standard was based on the pathology or Response Assessment in Neuro-Oncologycriteria for brain metastases (RANO-BM). The association between parameters of single-time or longitudinal tumor habitat and the time to recurrence and the site of recurrence were evaluated using the Cox proportional hazards regression analysis and Dice similarity coefficient, respectively. Results: The mean interval between the two MRI examinations was 99 days. The longitudinal analysis showed that an increase in the hypovascular cellular habitat (low ADC and low CBV) was associated with the risk of recurrence (hazard ratio [HR], 2.68; 95% confidence interval [CI], 1.46-4.91; P = 0.001). During the single-time analysis, a solid low-enhancing habitat (low T2 and low contrast-enhanced T1 signal) was associated with the risk of recurrence (HR, 1.54; 95% CI, 1.01-2.35; P = 0.045). A hypovascular cellular habitat was indicative of the future recurrence site (Dice similarity coefficient = 0.423). Conclusion: After SRS of brain metastases, an increased hypovascular cellular habitat observed using a longitudinal MRI analysis was associated with the risk of recurrence (i.e., treatment resistance) and was indicative of recurrence site. A tumor habitat analysis may help guide future treatments for patients with brain metastases.
Lee, Dongheon;Kong, Hyoun-Joong;Kim, Donguk;Yi, Jin Wook;Chai, Young Jun;Lee, Kyu Eun;Kim, Hee Chan
Annals of Surgical Treatment and Research
/
v.95
no.6
/
pp.297-302
/
2018
Purpose: Increased robotic surgery is attended by increased reports of complications, largely due to limited operative view and lack of tactile sense. These kinds of obstacles, which seldom occur in open surgery, are challenging for beginner surgeons. To enhance robotic surgery safety, we created an augmented reality (AR) model of the organs around the thyroid glands, and tested the AR model applicability in robotic thyroidectomy. Methods: We created AR images of the thyroid gland, common carotid arteries, trachea, and esophagus using preoperative CT images of a thyroid carcinoma patient. For a preliminary test, we overlaid the AR images on a 3-dimensional printed model at five different angles and evaluated its accuracy using Dice similarity coefficient. We then overlaid the AR images on the real-time operative images during robotic thyroidectomy. Results: The Dice similarity coefficients ranged from 0.984 to 0.9908, and the mean of the five different angles was 0.987. During the entire process of robotic thyroidectomy, the AR images were successfully overlaid on the real-time operative images using manual registration. Conclusion: We successfully demonstrated the use of AR on the operative field during robotic thyroidectomy. Although there are currently limitations, the use of AR in robotic surgery will become more practical as the technology advances and may contribute to the enhancement of surgical safety.
Isozyme and protein electrophoresis data from mycelial extracts of 27 isolates of Trichoderma harzianum, 10 isolates of T. aureoviride, and 10 isolates of T. longibrachiatum from Southern Peninsular Malaysia were investigated. The eight enzyme and a single protein pattern systems were analyzed. Three isozyme and total protein patterns were shown to be useful for the detection of three Trichoderma species. The isozyme and protein data were analyzed using the Nei and Li Dice similarity coefficient for pairwise comparison between individual isolates, species isolate group, and for generating a distance matrix. The UPGMA cluster analysis showed a higher degree of relationship between T. harzianum and T. aureoviride than to T. longibrachiatum. These results suggested that the T. harzianum isolates had high levels of genetic variation compared with the other isolates of Trichoderma species.
The present study is the first report of molecular variations in different accessions of Rauvolfia tetraphylla L.f, a medicinally important plant collected from seven locations of Andhra Pradesh, India. Molecular analysis was carried out using RAPD markers. Out of the 40 primers screened from OPA and OPC Kts, a total of 205 scorable polymorphic markers out of 397 total markers were generated. Polymorphism of 51.6% was found with 3 unique markers. Levels of genetic diversity within accessions i.e., the genetic distance ranged from 0.816-0.932. Cluster analysis based on Dice coefficient showed two major groups indicating that mostly in cross-pollinated plants, high levels of differentiation among accessions exists independent of geographical distance. Hence the results of the present study can be seen as a starting point for future researches on the population and evolutionary genetics of this species. Understanding such variation would also facilitate their use in various conservational management practices, rootstock breeding and hybridisation programmes.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.657-659
/
2019
본 논문에서는 피부 이미지에서 건선 병변만을 가장 효과적으로 분할 할 수 있는 분할기법 선별을 목표로 한다. Interactive graph cuts (IGC)와 Level set method (LSM)를 사용하여 건선 영역을 분할한 후 Jaccard Index (JI)와 Dice Similarity Coefficient (DSC)을 사용하여 건선 영역에 효과적인 분할 방법을 제안한다.
Park Eun-Hee;Kim Mi-Hee;Kim Joung-A;Han Nan-Sook;Lee Ju Hyeoun;Min Sang Gi;Park Yon Koung;Jin Seong Hyun;Jeong Gu Young;Bin Jae Hun
Journal of Life Science
/
v.15
no.2
s.69
/
pp.161-168
/
2005
In this study, we did the molecular typing of 39 environmental Legionella pneumophila serogroup 1 isolates collected from 2001-2003 in Busan using the pulsed-filed gel electrophoresis (PFGE). PFGE of SfiI fragments were divided into 10 pulsotypes $(A\~J)$, corresponding to $<65\%$ similarity and a subtype within each pulsotype was characterized by $>84\%$ similarity. The major cluster was pulsotype E $(46.2\%)$, which included 18 isolates and was divided into 4 subtypes $(E1\~E4)$. PFGE of NotI fragments were divided into 8 pulsotypes $(a\~h)$, corresponding to $<60\%$ similarity and a subtype within each pulsotype was characterized by $100\%$ similarity. The major cluster was pulsotype f $(38.5\%)$, which included 15 isolates. The ATCC type strain L. pneumophila serogroup 1 was identified as a different molecular pulsotype compare to the Busan isolates. It is possible that L. pneumophila serogroup 1 isolated in Busan with specific DNA pattern is comparable with those isolation in other cities in Korea.
The Journal of Korean Institute of Next Generation Computing
/
v.15
no.5
/
pp.64-74
/
2019
Although a non-rigid registration has high demands in clinical practice, it has a high computational complexity and it is very difficult for ensuring the accuracy and robustness of registration. This study proposes a method of applying a non-rigid registration to 3D magnetic resonance images of brain in an unsupervised learning environment by using a deep-learning network. A feature vector between two images is produced through the network by receiving both images from two different patients as inputs and it transforms the target image to match the source image by creating a displacement vector field. The network is designed based on a U-Net shape so that feature vectors that consider all global and local differences between two images can be constructed when performing the registration. As a regularization term is added to a loss function, a transformation result similar to that of a real brain movement can be obtained after the application of trilinear interpolation. This method enables a non-rigid registration with a single-pass deformation by only receiving two arbitrary images as inputs through an unsupervised learning. Therefore, it can perform faster than other non-learning-based registration methods that require iterative optimization processes. Our experiment was performed with 3D magnetic resonance images of 50 human brains, and the measurement result of the dice similarity coefficient confirmed an approximately 16% similarity improvement by using our method after the registration. It also showed a similar performance compared with the non-learning-based method, with about 10,000 times speed increase. The proposed method can be used for non-rigid registration of various kinds of medical image data.
In this study, we aimed to perform a comparative evaluation using quantitative factors between a region-growing based segmentation with noise reduction algorithms and a U-Net based segmentation. Initially, we applied median filter, median modified Wiener filter, and fast non-local means algorithm to computed tomography (CT) images, followed by region-growing based segmentation. Additionally, we trained a U-Net based segmentation model to perform segmentation. Subsequently, to compare and evaluate the segmentation performance of cases with noise reduction algorithms and cases with U-Net, we measured root mean square error (RMSE) and peak signal to noise ratio (PSNR), universal quality image index (UQI), and dice similarity coefficient (DSC). The results showed that using U-Net for segmentation yielded the most improved performance. The values of RMSE, PSNR, UQI, and DSC were measured as 0.063, 72.11, 0.841, and 0.982 respectively, which indicated improvements of 1.97, 1.09, 5.30, and 1.99 times compared to noisy images. In conclusion, U-Net proved to be effective in enhancing segmentation performance compared to noise reduction algorithms in CT images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.