• Title/Summary/Keyword: Diamond Like Carbon

Search Result 382, Processing Time 0.031 seconds

Field emission properties of diamond-like carbon films deposited by ion beam sputtering (이온빔 스퍼터링으로 제작된 다이아몬드성 카본 필름의 전계 방출 특성)

  • 안상혁;이광렬;전동렬
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.36-42
    • /
    • 1999
  • Field emission behaviors from diamond-like carbon films were investigated. The films were deposited on n-type Si wafer by ion beam sputtering method using 3 cm Kaufman type ion source. Regardless of the film thicknesses and atomic bond structure, the emission current was much enhanced by electrical breakdown between anode and the film surface. The effective work function was estimated to be about 0.1 eV. In order to identify the emission site, tungsten tip was scanned the damaged region damaged region but localized to a specific site. Analysis using Auger electron spectroscopy and SEM shows that SiC compound was not a sufficient condition for the electron emission. This result showed that the enhanced emission was mainly due to the changes in the chemical bond of the damaged region rather than the enhanced electric field caused by the morphological change.

  • PDF

Characteristics of Diamond Like Carbon Thin Film Deposited by Plasma Enhanced Chemical Vapor Deposition Method with Gas Flow Rate and Radio Frequency Power (가스 유량과 RF Power에 따라 PECVD 방법으로 증착된 DLC 박막의 특성)

  • Jeong, Seon-Yeong;Kim, Hyeon-Gi;Ju, Seong-Hu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.88-88
    • /
    • 2018
  • DLC(Diamond Like Carbon) 박막은 높은 열전도도, 큰 전기저항, 높은 강도 등의 다이아몬드와 유사한 특성을 가지고 있으면서 저온 저압에서도 합성이 가능하고, 합성 조건에 따라 물리 화학적 특성도 넓게 조절 할 수 있으며 상대적으로 넓은 면적에서 균일하고 평활한 박막의 합성이 가능하여 산업적 응용 면에서도 경쟁력을 갖추고 있다[1]. 이러한 DLC 박막을 합성함에 있어서 RF-PECVD(Radio Frequency Plasma Enhanced Chemical Vapor Deposition) 방법은 PECVD 방법 중 가장 보편적으로 사용되고 또 캐패시터 타입의 RF-PECVD 방법은 균일한 대면적 증착과 대량생산이 가능하다[1,2]. 본 연구에서는 우수한 특성을 갖는 DLC 박막의 증착 조건을 찾기 위해 캐패시터 타입의 RF-PECVD를 사용하여 공정 가스의 유량과 RF Power를 변화하여 박막을 증착하고, 증착된 박막의 특성을 연구하였다. DLC 박막은 ITO(Indium Tin Oxide) 유리 기판 위에 $100^{\circ}C$에서 5 min 동안 아세틸렌($C_2H_2$) 가스를 사용하여 가스 유량과 RF Power를 변화하여 증착하였다. 증착된 DLC 박막의 특성은 투과도, 평탄도, 두께를 측정하여 비교하였다. 가시광선 영역(380-780 nm)에서 투과도를 측정한 결과 ITO 유리 기판을 기준으로 한 DLC 박막의 투과도는 가시광선 영역 평균 94.8~98.8% 사이의 값으로 매우 높은 투과율을 나타내었다. 투과도는 가스 유량이 증가함에 따라 증가하는 경향을 나타내었고, RF Power의 변화에는 특정한 변화를 나타내지 않았다. 박막의 평탄도($R_a$, $R_{rms}$)와 두께는 AFM(Atomic Force Microscope)을 사용하여 측정하였다. 평탄도 $R_{rms}$는 0.8~3.3 nm, $R_a$는 0.6~2.5 nm 사이를 나타내었고 RF Power와 가스 유량의 변화에 따른 경향성을 나타내지는 않았다. 두께는 RF Power 25 W에서 55 W로 증가함에 따라 증가하는 경향을 나타내었으나 70W에서는 가스의 유량에 따라 상이한 결과를 나타내었다.

  • PDF

Parametric Studies of Pulsed Laser Deposition of Indium Tin Oxide and Ultra-thin Diamond-like Carbon for Organic Light-emitting Devices

  • Tou, Teck-Yong;Yong, Thian-Khok;Yap, Seong-Shan;Yang, Ren-Bin;Siew, Wee-Ong;Yow, Ho-Kwang
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Device quality indium tin oxide (ITO) films are deposited on glass substrates and ultra-thin diamond-like carbon films are deposited as a buffer layer on ITO by a pulsed Nd:YAG laser at 355 nm and 532 nm wavelength. ITO films deposited at room temperature are largely amorphous although their optical transmittances in the visible range are > 90%. The resistivity of their amorphous ITO films is too high to enable an efficient organic light-emitting device (OLED), in contrast to that deposited by a KrF laser. Substrate heating at $200^{\circ}C$ with laser wavelength of 355 nm, the ITO film resistivity decreases by almost an order of magnitude to $2{\times}10^{-4}\;{\Omega}\;cm$ while its optical transmittance is maintained at > 90%. The thermally induced crystallization of ITO has a preferred <111> directional orientation texture which largely accounts for the lowering of film resistivity. The background gas and deposition distance, that between the ITO target and the glass substrate, influence the thin-film microstructures. The optical and electrical properties are compared to published results using other nanosecond lasers and other fluence, as well as the use of ultra fast lasers. Molecularly doped, single-layer OLEDs of ITO/(PVK+TPD+$Alq_3$)/Al which are fabricated using pulsed-laser deposited ITO samples are compared to those fabricated using the commercial ITO. Effects such as surface texture and roughness of ITO and the insertion of DLC as a buffer layer into ITO/DLC/(PVK+TPD+$Alq_3$)/Al devices are investigated. The effects of DLC-on-ITO on OLED improvement such as better turn-on voltage and brightness are explained by a possible reduction of energy barrier to the hole injection from ITO into the light-emitting layer.

Effect of plasma etching on DLC films prepared by RF-PECVD method (RF-PECVD법에 의해 합성된 DLC 박막에 대한 plasma etching의 영향에 대한 연구)

  • Oh, Chang-Hyun;Yun, Deok-Yong;Park, Yong-Seob;Cho, Hyung-Jun;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.315-315
    • /
    • 2007
  • 본 논문에서는 DLC (Diamond-like carbon)박막이 가지는 높은 경도, 낮은 마찰계수, 전기적 절연성, 화학적 안정성 등의 특성을 이용하여, 리소그래피를 위한 resist나 hard coating물질로써 응용하기 위해, DLC 박막의 에칭에 관한 연구를 진행하였다. DLC 박막의 합성 과 에칭은 13.56 MHz RF plasma enhanced vapor deposition technique를 통해 이루어졌으며, DLC 박막은 150 W의 RF Power에서 메탄 $(CH_4)$과 수소$(H_2)$ 가스를 이용하여 약 300 nm의 두께로 제작되었으며, DLC박막의 에칭은 RF power의 변화 (50~250 W)와 산소 $(O_2)$가스의 유량변화 (5~25 sccm)에 따라 실시하였다. 에칭 되어진 DLC 박막의 표면 특성들은 AFM (atomic force microscopy)과 contact angle 장치를 사용하여 측정되었고, 측정된 결과로써 DLC 박막은 RF power와 산소 가스의 유량이 높을수록 etching rate는 증가하였고, 박막의 표면은 거칠어졌으며, 결국 DLC 표면에서는 산소에 의한 결합의 증가로 인해 친수성을 나타내었다.

  • PDF

Investigation on Liquid Crystal Alignment Effects of SiNx Thin Film Irradiated by Ion Beam (이온 빔 조사된 SiNx 박막의 액정 배향 효과에 관한 연구)

  • Lee, Sang-Keuk;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jin-Woo;Kang, Dong-Hun;Kim, Jong-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.398-398
    • /
    • 2007
  • Most recently, the Liquid Crystal (LC) aligning capabilities achieved by ion beam exposure on the diamond-like carbon (DLC) thin film layer have been successfully studied. The DLC thin films have a high mechanical hardness, a high electrical resistance, optical transparency and chemical inertness. Nitrogen doped Diamond Like Carbon (NDLC) thin films exhibit properties similar to those of the DLC films and better thermal stability than the DLC films because C:N bonding in the NDLC film is stronger against thermal stress than C:H bonding in the DLC thin films. Moreover, our research group has already studied ion beam alignment method using the NDLC thin films. The nematic liquid crystal (NLC) alignment effects treated on the SiNx thin film layers using ion beam irradiation for three kinds of N rations was successfully studied for the first time. The SiNx thin film was deposited by plasma-enhanced chemical vapor deposition (PECVD) and used three kinds of N rations. In order to characterize the films, the atomic force microscopy (AFM) image was observed. The good LC aligning capabilities treated on the SiNx thin film with ion beam exposure for all N rations can be achieved. The low pretilt angles for a NLC treated on the SiNx thin film with ion beam irradiation were measure.

  • PDF

Tribological Behaviors on nano-structured surface of the diamond-like carbon (DLC) coated soft polymer

  • No, Geon-Ho;Mun, Myeong-Un;Ahmed, Sk.Faruque;Cha, Tae-Gon;Kim, Ho-Yeong;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.356-356
    • /
    • 2010
  • Tribological behaviors of the hard film on soft substrate system were explored using the hard thin film of diamond-like carbon (DLC) coated the soft polymer of polydimethysiloxane (PDMS). A DLC film with the Young's modulus of 100 GPa was coated on PDMS substrate with Young's modulus of 10 MPa using plasma enhanced chemical vapor deposition (PECVD) technique. The deposition time was varied from 10 sec to 10 min, resulting in nanoscale roughness of wrinkle patterns with the thickness of 20 nm to 510 nm, respectively, at a bias voltage of $400\;V_b$, working pressure 10 mTorr. Nanoscale wrinkle patterns with 20-100 nm in width and 10-30 nm height were formed on DLC coating due to the residual stress in compression and difference in Young's modulus. Nanoscale roughness effect on tribological behaviors was observed by performing a tribo-experiment using the ball-on-disk type tribometer with a steel ball of 6 mm in diameter at the sliding speed of 220 rpm, normal load of 1N and 25% humidity at ambient temperature of $25^{\circ}C$. Friction force were measured with respect to thickness change of coated DLC thin film on PDMS. It was found that with increases the thickness of DLC coating on PDMS, the coefficient of friction decreased by comparison to that of the uncoated PDMS. The wear tracks before and after tribo-test were analyzed using SEM and AFM.

  • PDF

Friction Mechanisms of Silicon Wafer and Silicon Wafer Coated with Diamond-like Carbon Film and Two Monolayers

  • Singh R. Arvind;Yoon Eui-Sung;Han Hung-Gu;Kong Ho-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.738-747
    • /
    • 2006
  • The friction behaviour of Si-wafer, diamond-like carbon (DLC) and two self-assembled monolayers (SAMs) namely dimethyldichlorosilane (DMDC) and diphenyl-dichlorosilane (DPDC) coated on Si-wafer was studied under loading conditions in milli-newton (mN) range. Experiments were performed using a ball-on-flat type reciprocating micro-tribo tester. Glass balls with various radii 0.25 mm, 0.5 mm and 1 mm were used. The applied normal load was in the range of 1.5 mN to 4.8 mN. Results showed that the friction increased with the applied normal load in the case of all the test materials. It was also observed that friction was affected by the ball size. Friction increased with the increase in the ball size in the case of Si-wafer. The SAMs also showed a similar trend, but had lower values of friction than those of Si-wafer In-terestingly, for DLC it was observed that friction decreased with the increase in the ball size. This distinct difference in the behavior of friction in DLC was attributed to the difference in the operating mechanism. It was observed that Si-wafer and DLC exhibited wear, whereas wear was absent in the SAMs. Observations showed that solid-solid adhesion was dominant in Si-wafer, while plowing in DLC. The wear in these two materials significantly Influenced their friction. In the case of SAMs their friction behaviour was largely influenced by the nature of their molecular chains.

Evaluation of Tribological Characteristics of Diamond-Like Carbon (DLC) Coated Plastic Gear (플라스틱 기어의 트라이볼로지적 특성 향상을 위한 DLC 코팅 적용)

  • Bae, Su-Min;Khadem, Mahdi;Seo, Kuk-Jin;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Demand for plastic gears are increasing in many industries due to their low production cost, light weight, applicability without lubricant, corrosion resistance and high resilience. Despite these benefits, utilizing plastic gears is limited due to their poor material properties. In this work, DLC coating was applied to improve the tribological properties of polyamide66 gear. 0 V, 40 V, and 70 V of negative bias voltages were selected as a deposition parameter in DC magnetron sputtering system. Pin-on-disk experiment was performed in order to investigate the wear characteristics of the gears. The results of the pin-on-disk experiment showed that DLC coated polyamide66 with 40 V of negative bias voltage had the lowest friction coefficient value (0.134) and DLC coated PA66 with 0 V of negative bias voltage showed the best wear resistance ($9.83{\times}10^{-10}mm^3/N{\cdot}mm$) among all the specimens. Based on these results, durability tests were conducted for DLC coated polyamide66 gears with 0 V of negative bias voltage. The tests showed that the temperature of the uncoated polyamide66 gear increased to about $37^{\circ}C$ while the DLC coated gear saturated at about $25^{\circ}C$. Also, the power transmission efficiency of the DLC coated gear increased by about 6% compared to those without coating. Weight loss of the polyamide66 gears were reduced by about 73%.

Diamond-like Carbon Films Synthesized from $CH_4$, $CH_4-H_2$, and $CH_4-Ar$ Plasmas (메탄, 메탄-수소 및 메탄-아르곤 플라즈마로부터 합성된 다이아몬드성 탄소막)

  • Choi, Y.;Hong, J. W.;Lee, H. W.;Song, J. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 1995
  • Diamondlike carbon(DLC)films having good characteristics in mechanical and optical properties, were synthesized by rf-plasma enhanced chemical vapor deposition method. Methane, methane-hydrogen, or methane-argon were used as source gases. The infrared transparency and composition of the films were investigate. Especially, the anti-reflection effect of KLC film in infrared region was confirmed by depositing it on Ge/Si sample. When DLC films were deposited on the plastic substrates and thermal distortion, which were originated before and during deposition, respectively, played a role as a crack source of the films.

  • PDF

Plasma-immersion ion Deposition of Hydrogenated Diamond-like Carbon Films on Dielectric Substrates

  • Kon;Chun, Hui-Gon;Cho, Tong-Yul;Nikolay S. Sochugov;You, Yong-Zoo
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.4
    • /
    • pp.143-148
    • /
    • 2002
  • Method of plasma-immersion ion deposition of hydrogenated DLC films on relatively thick flat dielectric substrates from plasma of not-self-sustained low-pressure gas arc discharge is suggested. Coating properties have been investigated experimentally, average energy Per a deposited carbon atom depending on discharge current has been calculated. Optimum deposition parameters lot obtaining sufficiently hard and transparent high-adhesive a-C:H films on a 4-mm thick glass substrates have been determined. Possibility to use these coatings for photo-tools protection from abrasion wear at low operating loads is shown in general.

  • PDF