• Title/Summary/Keyword: Diagnostic Prediction

Search Result 212, Processing Time 0.025 seconds

Application of X-ray Computer Tomography (CT) in Cattle Production

  • Hollo, G.;Szucs, E.;Tozser, J.;Hollo, I.;Repa, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1901-1908
    • /
    • 2007
  • The aim of this series of experiments was to examine the opportunity for application of X-ray computer tomography (CT) in cattle production. Firstly, tissue composition of M. longissimus dorsi (LD) cuts between the $11-13^{th}$ ribs (in Exp 1. between the $9-11^{th}$ ribs), was determined by CT and correlated with tissue composition of intact half carcasses prior to dissection and tissue separation. Altogether, 207 animals of different breeds and genders were used in the study. In Exp. 2 and 3, samples were taken from LD cuts, dissected and chemical composition of muscle homogenates was analysed by conventional procedures. Correlation coefficients were calculated among slaughter records, tissues in whole carcasses and tissue composition of rib samples. Results indicated that tissue composition of rib samples determined by CT closely correlated with tissue composition results by dissection of whole carcasses. The findings revealed that figures obtained by CT correlate well with the dissection results of entire carcasses (meat, bone, fat). Close three-way coefficients of correlation (r = 0.80-0.97) were calculated among rib eye area, volume of cut, pixel-sum of adipose tissue determined by CT and intramuscular fat or adipose tissue in entire carcasses. Estimation of tissue composition of carcasses using equations including only CT-data as independent variables proved to be less reliable in prediction of lean meat and bone in carcass ($R^2 = 0.51-0.86$) than for fat (($R^2 = 0.83-0.89$). However, when cold half carcass weight was also included in the equation, the coefficient of determination exceeded $R^2 = 0.90$. In Exp. 3 tissue composition of rib samples by CT were compared to the results of EUROP carcass classification. Findings revealed that CT analysis has higher predictive value in estimation of actual tissue composition of cattle carcasses than EUROP carcass classification.

Development of Moving Average Prediction Diagnostic Module for Vibration Parameter Influenced by Environmental Factors (환경적 요인과 연관된 진동 파라메터를 진단하기 위한 이동평균 예측 진단 모듈 개발)

  • Oh, Se-Do;Kim, Young-Jin;Lee, Tae-Hwi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.797-804
    • /
    • 2013
  • In this study, the authors develop a methodology for a diagnostic system with a vibration parameter that is influenced by environmental factors. The data tends to have a varying average over time. Often, these features are found in statistical data retrieved from a production line. If we utilize existing statistical techniques for these features, we could derive an incorrect diagnostic conclusion based on the different average values. To overcome the limitations of previous methods, the authors apply a function analyzed through regression analysis to predict the mean value and corresponding upper and lower limits at each stage. This technique also provides corresponding statistical parameters in varying dynamic means. To validate the proposed methods, we retrieve data from the engine assembly line of H Motors and verify the results.

Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction

  • Quanmei Ma;Yue Ma;Tongtong Yu;Zhaoqing Sun;Yang Hou
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2021
  • Objective: To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). Materials and Methods: This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. Results: A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p = 0.002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). Conclusion: The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.

Key Principles of Clinical Validation, Device Approval, and Insurance Coverage Decisions of Artificial Intelligence

  • Seong Ho Park;Jaesoon Choi;Jeong-Sik Byeon
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.442-453
    • /
    • 2021
  • Artificial intelligence (AI) will likely affect various fields of medicine. This article aims to explain the fundamental principles of clinical validation, device approval, and insurance coverage decisions of AI algorithms for medical diagnosis and prediction. Discrimination accuracy of AI algorithms is often evaluated with the Dice similarity coefficient, sensitivity, specificity, and traditional or free-response receiver operating characteristic curves. Calibration accuracy should also be assessed, especially for algorithms that provide probabilities to users. As current AI algorithms have limited generalizability to real-world practice, clinical validation of AI should put it to proper external testing and assisting roles. External testing could adopt diagnostic case-control or diagnostic cohort designs. A diagnostic case-control study evaluates the technical validity/accuracy of AI while the latter tests the clinical validity/accuracy of AI in samples representing target patients in real-world clinical scenarios. Ultimate clinical validation of AI requires evaluations of its impact on patient outcomes, referred to as clinical utility, and for which randomized clinical trials are ideal. Device approval of AI is typically granted with proof of technical validity/accuracy and thus does not intend to directly indicate if AI is beneficial for patient care or if it improves patient outcomes. Neither can it categorically address the issue of limited generalizability of AI. After achieving device approval, it is up to medical professionals to determine if the approved AI algorithms are beneficial for real-world patient care. Insurance coverage decisions generally require a demonstration of clinical utility that the use of AI has improved patient outcomes.

Study on the Meaning of Four Subjects and Four Species as a Disease-Prediction Data and Diagnostic Value on Ante-Disease (질병예측자료로서 사과(四科) . 사류형상(四類形象)의 의의와 미병진단적 가치 연구)

  • Kim, Jong-Won;Jeon, Soo-Hyung;Lee, In-Seon;Kim, Kyu-Kon;Lee, Yong-Tae;Kim, Kyung-Chul;Eom, Hyun-Sup;Chi, Gyoo-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.325-330
    • /
    • 2009
  • In Korea, medical diagnostic equipments and biochemical examination can not be used in order for diagnosing sub-healthy state or ante-disease state in oriental medicine clinic. So morphic analogical method used in oriental medicine can be a good tool as a disease-predictable signs in order to enable preventive diagnosis and therapy. Therefore the four geometrical subjects; Essence, Pneuma, Spirit, Blood(四科;精氣紳血) and the four taxonomical species; Pisces, Quadruped, Aves, Carapaces(四類;魚走鳥甲) are chosen as morphic models in this paper. The differences of two classifying methods with four subjects and four species were as follows. The diagnostic category was meta-medical and synthetic against medical specific. The diagnostic object was body in contrast with face. They were able to be applicant in psychology and classification of characteristics against diagnostics and therapeutics directly in oriental medicine. The theoretical basis was basic diagrams of four unit-fluids of body and morphological analogy with four animal species respectively. And the therapeutic aims were systemic pathogenesis following five phase theory against congestion and deficiency of Essence, Pneuma, Spirit, Blood. The four subjects and four species are mixed each other practically in clinic. But it should be used limitedly because of the above reasons described and must divide the principal and secondary factors and follow the pathology of principal shape factor. In order to improve the diagnostic value of ante-disease state, the discriminable standards, measurement methods, limit of interrelating interpretation and the criteria of abnormal disproportion were needed to be defined more clearly in advance.

Assessment of Cerebral Collateral Circulation Using $^{99m}Tc$-Hexamethyleneamine Oxime (HMPAO) SPECT During Internal Carotid Artery Balloon Test Occlusion (내경동맥 풍선 시험 결찰술(BTO)시 $^{99m}Tc$-HMPAO 뇌 SPECT를 이용한 대뇌 측부 순환의 평가)

  • Ryu, Young-Hoon;Yun, Mi-Jin;Chung, Tae-Sub;Lee, Jong-Doo;Park, Chang-Yun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.22-30
    • /
    • 1995
  • To predict preoperatively the safety of permanent occlusion of an internal carotid artery with $^{99m}Tc$-HMPAO brain single photon emission computed tomography(SPECT) from an objective point of view, Twenty-four patients underwent balloon test occlusion (BTO) of the internal carotid arteries because of neck and skull base tumors. The authors assessed the uptake of both middle cerebral artery territories before and during BTO with $^{99m}Tc$-HMPAO brain SPECT using semiquantitative analysis method and compared the results with other factors(neurologic examination, arterial stump pressure and electroenceph-alogram). Nineteen patients had not experienced neurological deteriorating or any problem during BTO. Their comparative uptakes of the middle cerebral artery territories were 95 to 101% of the pre-BTO state. The remaining five patients showed severe neurologic symptoms such as transient hemiplegia and unconsciousness. Their comparative uptake of the middle cerebral artery territories were 77 to 85% of the pre-BTO state, and were well matched with other factors. $^{99m}Tc$-HMPAO brain SPECT before and during BTO seems to be a simple and objective method for prediction of permanent neurologic deficits when the comparative uptake of middle cerebral artery territories during BTO is lower than 85% of that before BTO.

  • PDF

A Study on the Simulator and Trouble Prediction Monitoring Methodology of the Automotive Air Conditioner (자동차 공조기의 시뮬레이터 및 고장예측 모니터링 기술에 관한 연구)

  • Son, Il-Moon;Kwak, Hyo-Yean
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1568-1575
    • /
    • 2013
  • There has been an increasing interest in the market of vehicle maintenance and repair equipments to decrease air pollution. However, most of the existing air conditioning system equipment in Korea have poor performance as well as non-protection against air pollution. The purpose of this paper is to develop the monitoring technology of recovering and recharging refrigerant for air conditioning system, and also to develop its related diagnostic system. This technology and system can supply the exact amount of refrigerant from the charger to the air conditioning system by precisely diagnosing and monitoring their statuses. This technology can also control recovering and recharging of refrigerant exactly by altering the recovering pressures of refrigerant according to circumstance temperatures.

Application of Quality Statistical Techniques Based on the Review and the Interpretation of Medical Decision Metrics (의학적 의사결정 지표의 고찰 및 해석에 기초한 품질통계기법의 적용)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.243-253
    • /
    • 2013
  • This research paper introduces the application and implementation of medical decision metrics that classifies medical decision-making into four different metrics using statistical diagnostic tools, such as confusion matrix, normal distribution, Bayesian prediction and Receiver Operating Curve(ROC). In this study, the metrics are developed based on cross-section study, cohort study and case-control study done by systematic literature review and reformulated the structure of type I error, type II error, confidence level and power of detection. The study proposed implementation strategies for 10 quality improvement activities via 14 medical decision metrics which consider specificity and sensitivity in terms of ${\alpha}$ and ${\beta}$. Examples of ROC implication are depicted in this paper with a useful guidelines to implement a continuous quality improvement, not only in a variable acceptance sampling in Quality Control(QC) but also in a supplier grading score chart in Supplier Chain Management(SCM) quality. This research paper is the first to apply and implement medical decision-making tools as quality improvement activities. These proposed models will help quality practitioners to enhance the process and product quality level.

A Study on Performance Diagnostics of Turbo-Shaft Engine For SUAV Using Gas Path Analysis (GPA 기법을 적용한 스마트 무인기용 터보축 엔진의 성능진단에 관한 연구)

  • Lee, Eun-Young;Roh, Tae-Seong;Choi, Dong-Whan;Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.82-89
    • /
    • 2006
  • Recently operation and maintenance cost of gas turbine engines has been issued as a major parameter in terms of designing and manufacturing. Accordingly, the conception that the maintenance and repair of an engine has to be conducted in assembled condition has been spreaded out. However, it is possible only if the prediction of the engine performance is clearly identified. In this study, therefore, a diagnostic code of the engine performance has been developed by using GPA(Gas Path Analysis) and Fuzzy Logic which can analyze the engine performance and estimate the health parameters. The prediction of the quantitative performance deterioration of the established model of the turbo-shaft engine for SUAV has been achieved in a satisfied level compared to that obtained by GSP code.

레이더 관측자료를 이용한 호남지방의 국지강수변화에 관한 수치모의

  • Park, Geun-Yeong;Lee, Sun-Hwan;Ryu, Chan-Su
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.02a
    • /
    • pp.182-187
    • /
    • 2005
  • The weather hazard by worldwide global warming rapidly increases year by year, and the damage becomes also enormous. especially, the damage by the random local severe rain in Korea is conspicuous. The forecast is difficult, because the random local severe rain arises by the complicated mechanism. However, local weather field in the Honam district where the weather hazard arises well is accurately grasped, and the systems that predict the local severe rain early are necessary. The purpose of this research is development of radar data assimilation observed at Jindo S-band radar. The accurate observational data assimilation system is required for meteorological numerical prediction of the region scale. Diagnostic analysis system LAPS(Local Analysis and Prediction System) developed by US FSL(Forecast Systems Laboratory) is adopted assimilation system of the Honam district forecasting system.

  • PDF