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INTRODUCTION

Artificial intelligence (AI) technology is expected to 
be of substantial help in medicine by overcoming current 
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limitations and developing innovative solutions and will 
likely have a great impact on healthcare in the future [1,2]. 
All pharmaceuticals and medical devices, including AI 
devices, must be subjected to a rigorous clinical validation 
process to ensure safety and efficacy prior to use on 
patients. There is a wide range of AI devices for use in 
healthcare, and the methods used for clinical validation 
vary according to their form and function. Most are 
classified as diagnostic devices, as they are algorithms used 
to assist with diagnosis, decision-making, and prediction, 
such as computer-aided detection (CADe), computer-aided 
diagnosis, or clinical decision support systems. As such, 
methods for their clinical validation resemble those for 
common diagnostic tests. In this article, we aim to explain 
the key principles of clinical validation, device approval, 
and insurance coverage decisions for AI algorithms in 
healthcare.
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Performance Indicators of AI Algorithms

There are a variety of indicators that may be used to 
evaluate the performance of AI algorithms. Some are 
technical indicators with little medical relevance, and 
others apply only to specific situations. Therefore, instead 
of presenting a comprehensive list of all indicators, we have 
focused on frequently used indicators with high medical 
relevance.

Dice Similarity Coefficient
The Dice similarity coefficient is used to evaluate AI 

algorithms that perform segmentation of organs or lesions 
on medical images [3]. Its definition is illustrated in 
Figure 1. For example, if there is an AI algorithm that can 
display the area suspected of prostate cancer on prostate 
magnetic resonance imaging (MRI), its performance can 
be evaluated by measuring the degree of overlap between 
the pathologically confirmed cancerous region and the area 
identified as cancer by the algorithm. There are several 
other coefficients similar to the Dice similarity coefficient. 

Sensitivity, Specificity, Receiver Operating Characteristic 
Curve

As shown in Figure 2, if an AI algorithm presents a 
binary result (e.g., presence vs. absence of a disease), its 
performance can be described, as in general diagnostic 
tests, in terms of sensitivity = true positive/(true positive 
+ false negative), i.e., the proportion of subjects identified 
as positive by the AI out of all disease-positive subjects, 
and specificity = true negative/(false positive + true 
negative), i.e., the proportion of subjects identified as 
negative by the AI out of all disease-negative subjects. 
Even though the result an AI algorithm gives is presented 

as a binary classification, it is preceded by the process of 
outputting the result as a continuous number (for example, 
a decimal range between 0 and 1 as in probability). A 
threshold is then applied to convert it into a binary result. 
The sensitivity and specificity of the AI algorithm vary 
depending on how the threshold is set. If the threshold is 
set high, sensitivity decreases and specificity increases. If 
the threshold is set low, the sensitivity increases and the 
specificity decreases. A receiver operating characteristic 
(ROC) curve is a graph drawn by plotting the sensitivity on 
the y-axis and 1 - specificity on the x-axis, while varying 
the threshold value (Fig. 3) [4]. The value of the area under 
the curve (AUC) or area under the ROC (AUROC) curve is 
the mean sensitivity or specificity for all possible threshold 
values. Its maximum value is 1. In theory, the higher the 
value, the higher the diagnostic accuracy. Interpretations 
should be made carefully, however, because a higher AUROC 
value of an AI algorithm is not necessarily equivalent to 
higher performance of the AI in practice. Given that a 

Dice coefficient = (2 x |A∩B|) / (|A| + |B|)

|A∩B|

Fig. 1. Dice similarity coefficient.

Disease state to diagnose/predict
according to reference standard

Present Absent

AI result
Present TP FP

Absent FN TN

Fig. 2. Diagnostic cross-table (also referred to as confusion 
matrix). AI = artificial intelligence, FN = false negative, FP = false 
positive, TN = true negative, TP = true positive
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Fig. 3. Exemplary receiver operating characteristic curves that 
show the performance of four readers in interpreting breast 
ultrasonography assisted by a deep-learning algorithm. Adapted 
from Choi et al. Korean J Radiol 2019;20:749-758, with permission 
from the Korean Society of Radiology [4]. AUC = area under the curve
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particular threshold value is required when using an AI 
algorithm in practice, the sensitivity and specificity values 
for the given threshold, not the mean AUROC value, are 
the algorithm’s actual measures of performance. The AUROC 
value is merely the mean sensitivity or specificity value. For 
further details, see the relevant literature [2,5,6].

Free-Response ROC Curve
The free-response ROC (FROC) curve is used to evaluate 

the performance of AI algorithms with a CADe function, 
such as those for detecting colonic polyps on colonoscopy 
images. The AI algorithm output is correct when both the 
presence of a lesion and the localization of the lesion site 
are proven correct. When the AI algorithm for detecting 
colonic polyps indicates there is a polyp in a patient with 
colonic polyps, its diagnosis is correct only when it also 
detects the correct lesion site. If it fails to detect a polyp 
in an area where there is one and indicates there is a polyp 
in an area where there is none, it has produced both false-
negative and false-positive results. In diagnostic tasks 
where a CADe-enabled algorithm is applied, there may be 
multiple lesions in a patient, and a CADe-enabled algorithm 
may present multiple false positives. In this case, it would 
be more appropriate to evaluate the algorithm’s diagnostic 
accuracy using sensitivity and the number of false positives 
instead of sensitivity and specificity. If the threshold value 
is set too high for the algorithm’s internal continuous 
output values, the sensitivity decreases, as does the number 
of false positives; if the threshold value is set too low, 
the sensitivity increases, but the number of false positives 
increases as well. The FROC curve is a graph drawn by 
plotting the sensitivity on the y-axis and the mean number 
of false positives instead of 1 - specificity on the x-axis 
(Fig. 4) [7]. The mean number of false positives can be 
calculated in several ways, depending on the situation. For 
example, they can be calculated using the mean number per 
patient or per image. There are also slightly modified forms 
of the FROC method. For further details, see the relevant 
literature [8,9].

Calibration Accuracy
The performance indicators described above are all 

indicators of discrimination accuracy. Calibration accuracy, 
on the other hand, which describes how similar the 
predicted probability values presented by an AI algorithm 
(for example, “The probability of this lesion to be 
cancerous is X%”) are to the actual probabilities, should 

be evaluated separately [6]. According to the Bayes’ 
theorem of probability, the actual probability is greatly 
influenced by the pretest probability, also referred to as 
disease prevalence. It follows that a probability presented 
by an AI algorithm that does not take into consideration 
the pretest probability is likely inaccurate. Therefore, a 
rigorous evaluation of calibration accuracy is required for all 
AI algorithms that present probabilities directly to users. 
Particular care should be taken, as calibration accuracy is 
often overlooked when evaluating the performance of an AI 
algorithm [6]. It goes beyond the scope of this paper to go 
into details about calibration accuracy. For further details, 
see the relevant literature.

Limited Generalizability of AI Algorithm 
Performance in Healthcare

Overfitting in AI Algorithms for Medical Diagnosis/
Prediction

Machine learning algorithms characterized by high 
dimensionality and mathematical complexity, such as 
deep learning which represents the current AI technology, 
have strong data dependence. Therefore, they tend 
to have excellent accuracy in training data, but their 
performance deteriorates in external data not used for 
training. This phenomenon is called ‘overfitting’ [10]. It 
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Fig. 4. Exemplary free-response receiver operating 
characteristic curves that show the performance of six methods 
of detecting polyps in colonoscopy videos. The x-axis is the 
mean number of false positives per image frame. A curve closer to 
the left upper corner indicates a higher performance, for example, a 
higher performance of the red curve than the blue curve. Adapted from 
Tajbakhsh et al. Proceedings of IEEE 12th International Symposium on 
Biomedical Imaging. New York: IEEE; 2015, with permission from IEEE 
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is well known that AI algorithms for medical diagnosis/
prediction are particularly prone to overfitting. There 
are several techniques to reduce overfitting, collectively 
termed regularization, but regularization alone is often 
insufficient to address overfitting in AI algorithms for 
medical diagnosis/prediction. For this reason, most current 
AI algorithms in medicine may fail to generalize [11]. Table 
1 shows some examples of the limited generalizability of 
AI algorithms for medical diagnosis/prediction [12-16]. As 
shown in these examples, in real-world clinical settings, the 
diagnostic accuracy of these AI algorithms decreases or the 
presented probability becomes incorrect, and the threshold 
value set for converting the internal output value into the 
final result does not fit.

Reasons for High Overfitting in AI Algorithms for 
Medical Diagnosis/Prediction

The fundamental reason behind the high overfitting 
and limited generalizability of AI algorithms for medical 
diagnosis/prediction is their failure to sufficiently reflect 
the real-world situations in the data sets used to train 
the AI algorithms [11,17-19]. Several factors are involved 
in this phenomenon. First, medical data are highly 
heterogeneous. Even if patients have the same disease, 
their other characteristics such as age, sex, disease severity, 
underlying conditions, or comorbidities often differ across 
the capacity, type, and location of the hospitals. The 

variety and distribution of similar diseases or differential 
diagnoses found in patients suspected of a particular 
disease but who do not have the disease also often differ 
across hospitals. Disease prevalence may also vary from 
one hospital to another. Simply put, the situation of one 
hospital often cannot be applied to another. The fact that 
hospitals utilize different devices also contributes to the 
data heterogeneity. For example, in the case of imaging 
devices, such as computed tomography and MRI, an AI 
algorithm tuned to the image properties of one vendor may 
not work well on the images obtained with the scanners 
from another manufacturer. Furthermore, advances in 
healthcare equipment and technologies lead to constant 
changes in therapeutic agents and diagnostic tools, which 
creates temporal heterogeneity. For example, AI algorithms 
trained with data including treatment agents used in the 
past cannot function correctly in situations where different 
therapeutic agents are used; likewise, AI that has been 
trained on images from old imaging devices may not work 
properly on images from new devices. To overcome this 
data heterogeneity, it is necessary to train AI with a huge 
amount data systematically collected from as many hospitals 
as possible, which is a labor- and time-intensive procedure 
requiring committed medical professionals and a large 
amount of material resources. The paradoxical combination 
of high data heterogeneity and insufficient data for training 
AI algorithms often results in a situation where the training 

Table 1. Examples of Limited Generalizability of the Performance of Artificial Intelligence Algorithms for Medical Diagnosis/
Prediction

Author Algorithm Result
Zech 
  et al. [12]

CNN algorithm to detect pneumonia on chest radiographs
AUC of 0.931 in internal testing compared with 0.815 
  in external testing

Ting 
  et al. [13]

CNN algorithm to detect referable diabetic retinopathy 
  on retinal photographs

AUC ranging from 0.889 to 0.983 when tested externally 
  at 10 different hospitals

Ridley [14]
CNN algorithm to detect intracranial hemorrhage 
  on noncontrast head computed tomography scans

Sensitivity, specificity, and AUC of 98%, 95%, and 0.993, 
  respectively, when tested internally compared with 87.1%, 
  58.3%, and 0.834, respectively, when tested 
  on a real-world data set

Hwang 
  et al. [15]

CNN algorithm to distinguish normal chest radiographs 
  from abnormal chest radiographs that contain any 
  of the four types of pathologies including malignancy, 
  tuberculosis, pneumonia, and pneumothorax

When externally tested at five different hospitals with 
  a single fixed threshold applied to the raw algorithm 
  output, the specificity indicated a wide range from 56.6% 
  to 100%, while the sensitivity was less variable ranging 
  from 91.3% to 100%

Lee 
  et al. [16]

CNN algorithm to categorize hepatic fibrosis (F0, F1, 
  F2–3, and F4 according to METAVIR scoring) on B-mode 
  ultrasonography images

Accuracy of 83.5% in internal testing compared with 76.4% 
  in external testing

AUC = area under the curve, CNN = convolutional neural network
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data sets do not sufficiently reflect the clinical settings in 
which an algorithm is intended to be used. In addition, 
real-world medical data contain diverse gray areas and 
noise elements. There are cases in which no clear reference 
standards are available to determine the presence or 
absence of a certain disease. The presence vs. absence of a 
disease, as described in a binary variable (0 or 1), may only 
represent a few specific points along a continuous phase 
of change in the development and progress of an entire 
disease process. Nevertheless, data allowing a clear binary 
disease classification (present/absent) are often selectively 
used for AI training purposes [20]. Also, data from which 
noise elements are removed for more efficient processing by 
computer programs are used preferentially.

Implications of the Limited Generalizability
First, when evaluating AI algorithm performance, it is 

important to perform external validation using external 
data, as discussed further later [6,10,11,21-29]. Given that 
an AI algorithm’s performance in a clinical envirionment 
may differ from when it was developed, it is best to 
conduct external validation directly in the target clinical 
environment. Nevertheless, insufficient external validation 
of AI algorithms frequently poses problem [30]. Second, 
instead of blindly accepting the result presented by an AI 
algorithm, medical professionals should make final decisions 
after due consideration to the clinical situation and 
other relevant information. The threshold value described 
above should also be properly tuned to the clinical 
situation. For these reasons, while high-performance AI 
might replace medical professionals for specific functions 
under limited conditions, AI is not an autonomous tool 
to replace a medical professional; its role is limited to 
providing competent assistance and information to the 
medical professional. Third, as a method to improve the 
generalizability of an AI algorithm, an additional training 
round may be administered using data from target hospitals 
and specific clinical settings prior to its use in the practice. 
There are concerns, however, that an AI algorithm’s initial 
accuracy may be impaired if it is trained with additional 
data that include errors and biases. Unlike locked software 
algorithms, AI algorithms can change through continuous 
learning, and continuous evaluation and management are 
required, even after device approval. As the current device-
approval system has no concrete provisions for continuous 
evaluation and management, this aspect should be 
addressed in the future.

Evaluating AI Algorithm Performance: 
Classification according to Data Used

The methods of evaluating AI algorithms' performance 
can be classified according to the characteristics of the 
data used for the evaluation. Before explaining these 
classifications, it is necessary to understand the term 
‘validation’ clearly. In addition to its ordinary meaning 
(i.e., verification or confirmation), as used in this article, 
validation is also a technical term in the machine learning 
field, referring to the process of adjusting hyperparameters 
when making AI algorithms [31]. The process of adjusting 
hyperparameters is also called tuning to avoid confusion; 
however, validation is more widely used to indicate the 
procedure in AI-related literature [31]. On the other 
hand, validation test or test is used instead of validation 
to indicate verification of algorithm performance and 
distinguish it from the process of adjusting hyperparameters 
[32,33].

Internal Validation
Internal validation tends to overestimate the performance 

of AI algorithms. Therefore, internal validation has a role 
in checking the algorithm performance while developing it 
rather than confirming the performance of a finished model. 
External validation is required to determine the performance 
of AI algorithms. Results from internal validation can be 
used to compare the results of external validation. Cross-
validation and split-sample validation are categorized as 
types of internal validation.

Cross-Validation
A well-known example of cross-validation is k-fold cross-

validation [32]. The original data are split into k number of 
groups; one group is retained as the testing data, and the 
remaining groups form the training data. At each iteration, 
one group after another is used as the testing data until 
every group has been used once. Finally, the mean of 
all results is obtained. This method can be used for a 
preliminary evaluation of an algorithm’s performance when 
the original data size is small. However, it is considered 
inadequate for algorithm performance validation.

Split-Sample Validation
In split-sample validation, the original data are split into 

three sets (training set, tuning set, and test set). The test 
set is not used for training and tuning of the AI algorithm; 
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it is used to test the performance of the trained and tuned 
AI algorithm (Fig. 5) [32]. The data can be split randomly 
or stratified according to the data-collection period. Split-
sample validation is better suited for internal validation 
than cross-validation.

External Validation
External validation refers to evaluation of an AI 

algorithm’s performance using data collected independently 
instead of the original data (Fig. 5). Typically, a data set 
provided by external hospitals is used instead of the one 
that provided the training data. As shown in Figure 2, to 
evaluate the performance of an AI algorithm, two categories 
of data are required: one that contains the condition 
targeted by the AI algorithm for diagnosis or prediction and 
one that does not. Depending on the method of collecting 
these validation data, external validation studies can be 
largely divided into diagnostic case-control and diagnostic 
cohort studies [34]. 

Diagnostic Case-Control Study
In diagnostic case-control studies, samples with and 

without the target condition to be diagnosed or predicted 
by an AI algorithm are collected separately. For example, 
when evaluating the performance of an AI algorithm that 
discriminates the presence or absence of lung cancer by 
analyzing chest X-ray images, a certain number of chest 
X-ray images with lung cancer (case) and without lung 
cancer (control) are collected. When data is collected in 
this way, prevalence (in the example case, the proportion 

of chest X-rays with lung cancer among the total number 
of chest X-ray images) is artificially designated, unlike 
the natural prevalence observed in real-world settings. 
Moreover, the method by which the images with and 
without lung cancer are collected may affect the degree of 
variation in the size and shape of the included lung cancers, 
the presence or variety of lung lesions that may mimic lung 
cancer in patients without lung cancer, and the presence 
or degree of various conditions or underlying diseases and 
comorbidities that can affect the discovery of lung cancer, 
all of which are collectively referred to as ‘spectrum.’ Data 
collected in this case-control manner often differ from the 
natural spectrum in clinical settings due to selection bias 
[35]. This artificial spectrum and prevalence affect the 
evaluation of algorithm performance [2,6].

Diagnostic Cohort Study
In a diagnostic cohort study, the clinical setting in 

which an AI algorithm will be applied is predefined; 
data are collected based on this definition, regardless 
of the presence/absence of the disease to be diagnosed 
or predicted by the AI algorithm. In the case of an AI 
algorithm discriminating the presence or absence of lung 
cancer on chest X-rays, the eligibility criteria (for example, 
“adults 55 years of age and older with X pack-year smoking 
history”) are defined. The AI algorithm performance is 
assessed on X-ray images taken from patients who are 
continuously recruited or randomly selected from those 
satisfying the eligibility criteria. Some of the recruited 
patients may have lung cancer, and others may not. In this 

Typical data split for algorithm development

AI algorithm

Training set Tuning set
also called
‘validation’ set 
in the field
of machine
learning

Internal test set
unused 
for training
or tuning

External test set
collected by 
  -  case-control 

design
  -  diagnostic 

cohort design

External testingInternal testing

Fig. 5. Typical data sets used for development and testing of an AI algorithm. AI = artificial intelligence
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way, data with the natural spectrum and prevalence can 
be collected, and the performance and the threshold value 
determined in the validation study can be more directly 
applied to the clinical setting defined by the eligibility 
criteria. Whereas a diagnostic case-control study evaluates 
performance in a somewhat artificial experimental setting, 
a diagnostic cohort study evaluates performance in a more 
realistic clinical environment. It is essential to clearly 
understand the actual clinical setting for which the AI 
algorithm is intended when determining the concrete 
eligibility criteria to reflect the clinical setting adequately.

Differences between Diagnostic Case-Control Study and 
Diagnostic Cohort Study

Diagnostic case-control and diagnostic cohort studies are 
designed for different purposes. The former aims to evaluate 
the overall ‘technical performance’ of an AI algorithm for 
the intended diagnosis/prediction. Although prospective 
studies offer certain advantages, retrospective studies can 
also be used to validate the technical performance of an 
AI algorithm, subject to the availability of a validation 
data set containing well-distributed examples of various 
difficulty levels matching the purpose of the AI algorithm. 
Diagnostic cohort studies aims to evaluate the ‘clinical 
performance’ of an AI algorithm in specific clinical settings 
or patient groups. Therefore, compared to a diagnostic 
case-control study, a diagnostic cohort study has a clearer 
and more concrete notion of the clinical target population, 
i.e., clinical indication. For diagnostic cohort studies, a 
prospective study design is recommended. In general, the 
technical performance of an AI algorithm is first tested 
via a diagnostic case-control study, then the clinical 
performance is tested via a diagnostic cohort study. There is 
a tendency for performance to be rated higher in diagnostic 
case-control studies than in diagnostic cohort studies.

Validation Using Standard Data Sets
Some are of the opinion that standard data sets should 

be used for performance validation of AI algorithms. The 
process of collecting standard data is often similar to 
that of collecting data for diagnostic case-control studies. 
Therefore, well-established standard data sets may prove 
suitable for evaluating the technical performance of AI 
algorithms. Such standard sets would be rendered more 
efficient when collected from many different hospitals. 
One of the major drawbacks of standard data is that AI 
algorithms that perform well only on standard data can 

emerge. A standard data set can be compared to the College 
Entrance Exam (Korean equivalent of SAT). Every year, new 
questions are formulated under thorough security measures, 
because reusing questions does not allow for the proper 
evaluation of a student’s performance. Likewise, a standard 
data set that is not continuously updated may be subject to 
the “leaking test questions” effect. Moreover, to successfully 
generate a genuinely representative standard data set, 
meticulous prior research is needed on fundamental issues 
such as the conditions required for a standard data set 
to test the performance of AI algorithms sufficiently and 
objectively.

Passing Criteria for AI Algorithm Performance 
Evaluation

When evaluating AI algorithm performance, a criterion for 
determining whether the performance is adequate should 
also be prepared. This can be done by comparing the stand-
alone performance of an AI algorithm with an absolute 
criterion (e.g., 90% or higher accuracy), which may involve 
ambiguity. It may be more intuitive to prepare a control 
method against which you can check the performance of an 
AI algorithm. These may include comparing AI with existing 
similar AI algorithms, other tests, or medical professionals 
as the control, as well as comparing medical professionals 
using AI with those not using AI as the control. While the 
focus of former is on the performance of AI algorithms 
themselves, the latter reflects the role of AI as an auxiliary 
tool providing information to medical professionals. The 
medical professionals may include both experienced and 
unexperienced doctors, and more useful information 
will likely be derived when the comparative results are 
analyzed according to their level of experience. In a 
relative comparison with a control, it is necessary to set 
the performance-difference criteria (e.g., less than 5%) at 
which the two compared results are considered statistically 
equivalent or significantly different. The passing criterion 
for absolute performance evaluation or for the relative 
comparison with a control cannot be set uniformly; it must 
be set according to the function of each AI algorithm and 
each clinical setting. Once the criterion is established, 
the sample size needed for performance evaluation can be 
calculated using well-known statistical methods [36-39].
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Evaluation of the Clinical Utility of AI 
Algorithms

High accuracy does not necessarily mean an AI 
algorithm can improve clinical outcomes. AI algorithms 
are computerized aids that provide information to medical 
professionals to assist them in the clinical decision 
process. For any computerized tool to be useful, how the 
tool is integrated into the workflow is critical besides its 
performance. An AI algorithm must deliver information to 
the right person in the right way. Likewise, the coordinating 
doctor’s response to the information from AI and the 
actions taken greatly affect the outcomes of patient care. 
Since the final clinical outcomes are achieved through 
the therapeutic or prophylactic actions taken based on 
diagnostic decisions, if no therapeutic or prophylactic 
actions are taken, no effects are made to the clinical 
outcomes. On the other hand, therapeutic or prophylactic 
actions can also bring about adverse reactions in some 
patients. Therefore, it is crucial to directly assess the effect 
of AI on clinical outcomes apart from its performance [40]. 
Such an evaluation is called validation of ‘clinical utility.’ 
Utility and efficacy are not interchangeable terms. Technical 
performance, clinical performance, and clinical utility are all 
indicators of efficacy of different levels and characters.

An example of validating clinical utility is provided in a 
study on an AI algorithm developed in the United Kingdom 
that monitors and analyzes the uterine contractions of 
a woman in labor and the heartbeat of the fetus and 
sends a real-time alert to the doctor when a fetal problem 
is suspected [41]. After verifying the accuracy of the 
algorithm, the investigators randomly assigned high-
risk women in labor into AI-aided and AI-unaided groups 
to compare the outcomes of care [41]. Although the AI 
algorithm showed high accuracy in recognizing abnormal 
heartbeats, no significant difference in clinical outcome 
was observed between the experimental and control groups 
for both fetuses and mothers. As a result, the study could 
not demonstrate the clinical utility of the AI algorithm in 
terms of medical benefits to patients.

As shown in this example, validating the clinical utility 
of AI algorithms involves determining any differences 
in patient outcomes between AI-aided and AI-unaided 
patient care. Ideally, a randomized clinical trial should be 
conducted to prevent the effect of confounding variables 
in the intergroup comparison. However, since randomized 
clinical trials are not always possible, the results of 

prospective or retrospective observational research adjusted 
for confounding variables may be used. There are also AI 
algorithms that may be clinically validated sufficiently 
via performance validation alone without clinical utility 
validation. The appropriate level of clinical validation 
tailored to individual AI algorithms and clinical settings 
should be determined by medical experts. Table 2 provides a 
few examples of randomized controlled trials examining AI 
algorithms [41-46].

Clinical Validation of AI Algorithms from the 
Viewpoint of Device Approval and Insurance 
Coverage

Device approval, issued by entities such as the Korean 
Ministry of Food and Drug Safety (MFDS), the US Food and 
Drug Administration, and the European Commission (CE 
Marking), and decisions surrounding insurance coverage 
involve not only scientific principles but also sociopolitical 
factors. Therefore, AI device approval and insurance coverage 
may vary according to country, period, and social factors, 
and they cannot be explained from one perspective. This 
paper provides scientific principles alone related to AI device 
approval and insurance coverage. For the definitions of 
technical performance, clinical performance, clinical utility, 
diagnostic case-control study, and diagnostic cohort study, 
see explanations in the corresponding parts of this article.

Differences between Pharmaceuticals and Diagnostic 
Devices

Most medical AI algorithms are diagnostic devices and 
thus subject to the process of diagnostic device approval 
and insurance coverage. For a proper understanding of 
AI algorithms in this context, it is useful to clarify the 
difference between diagnostic devices and pharmaceutical 
agents. 

For the approval of a pharmaceutical agent, it is generally 
necessary to prove, in a phase III clinical trial, that a given 
pharmaceutical agent improves patient treatment outcomes 
when used within a specific patient population. In other 
words, the clinical utility should be demonstrated for a 
particular indication. In contrast, approval of diagnostic 
devices does not require high-level clinical evidence 
applied to pharmaceutical agents, and generally focuses on 
technical performance validation. Of course, higher-level 
clinical validation data, if available, may enable a more 
thorough evaluation.
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Insurance coverage is an act that an insurer pays for 
medical services (i.e., the use of pharmaceutical agents 
or medical devices) delivered to policyholders (i.e., 
patients) who pay premiums. Therefore, it is important to 
demonstrate the clinical utility (i.e., patient benefit) of 
the medical services provided. Given that a medical service 
can be useful to one patient and useless to another, its 
indications must be specified when applying insurance 
coverage. Coverage of a medical service provided to patients 
(i.e., payment for medical fees indirectly by patients 
through insurance premium) in whom clinical utility has 
not been proven is unusual and unreasonable. In the case 
of therapeutic agents, the conditions for insurance coverage 
are essentially the same as those for their approval. 
Therefore, after approval, reasonably priced drugs are 
generally automatically covered by insurance. For diagnostic 
devices, however, approval is usually issued after technical 
performance validation, falling short of the requirements 
for clinical utility validation needed for insurance coverage. 
For this reason, device approval is not automatically 

associated with insurance coverage. A diagnostic device 
approved by regulatory agencies can be marketed and used 
for clinical practice. Later, if further clinical testing reveals 
clinical conditions in which the device is beneficial for 
patients, insurance coverage may include these indications. 
For example, even if MRI and ultrasonography have been 
approved by their proven technical performances, they 
are not covered by insurance until their use has proven 
beneficial for patient care in more specified clinical 
conditions and patient populations.

Device Approval for AI Algorithms
For device approval of an AI algorithm, its technical 

performance validation must be sufficiently documented at 
least. An AI algorithm’s technical performance validation 
can be performed through external validation such as 
diagnostic case-control study. A prospective study is 
advantageous, if possible, but a retrospective study can 
also provide technical performance validation of an AI 
algorithm, subject to the availability of a validation 

Table 2. Examples of Randomized Controlled Trials that Compared Practice with and without Artificial Intelligence Algorithms

Author Algorithm Patient Primary Outcome
Wijnberge 
  et al. [42]

Non-deep learning, machine 
  learning algorithm that 
  continuously analyzes 
  arterial pressure waveform 
  during surgery and warns 
  if hypotensive event 
  is expected within the next 
  15 minutes

Adult patients (≥ 18 years old) 
  scheduled to undergo 
  an elective noncardiac surgery 
  under general anesthesia 
  with need for continuous 
  invasive blood pressure 
  monitoring per arterial line

Time-weighted average of hypotension during 
  surgery defined as hypotension below a mean 
  arterial pressure of 65 mm Hg (in millimeters 
  of mercury) x time spent below a mean arterial 
  pressure of 65 mm Hg (in minutes) divided 
  by total duration of operation (in minutes)

INFANT 
  Collaborative 
  Group [41]

Non-deep learning, machine 
  learning algorithm that 
  continuously analyzes 
  cardiotocographic data 
  and delivers color-coded 
  alerts to physicians when 
  abnormalities are noted

Women in labor who require 
  continuous electronic fetal 
  heart rate monitoring

Rate of poor neonatal outcome (intrapartum 
  stillbirth or early neonatal death excluding lethal 
  congenital anomalies, or neonatal encephalopathy, 
  admission to the neonatal unit within 24 h 
  for ≥ 48 h with evidence of feeding difficulties,
  respiratory illness, or encephalopathy with evidence 
  of compromise at birth), and developmental 
  assessment at age 2 years in a subset of surviving 
  children

Repici et al. [43],
Wang et al. [44], 
Wang et al. [45]

CNN-based CADe algorithm 
  that detects polyps 
  on colonoscopy images

Patients undergoing screening,
  surveillance, or diagnostic 
  colonoscopy

Adenoma detection rate (percentage of patients 
  with at least one histologically proven adenoma 
  or carcinoma)

Wu et al. [46] CNN-based algorithm that 
  monitors occurrence 
  of blind spots during 
  esophagogastroduodenoscopy 
  examination

Patients undergoing 
  esophagogastroduodenoscopy

Rate of blind spots (number of unobserved 
  sites/views from a total of 26 different sites/views 
  in a patient as defined by the investigators) 
  during endoscopic examination

CADe = computer-aided detection, CNN = convolutional neural network
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data set containing well-distributed examples of various 
difficulty levels matching its purpose. The conditions 
under which the AI algorithm operates well should be 
clarified and documented during the technical performance 
validation (e.g., devices and image acquisition methods, 
etc. that work well with the AI). It should be noted that AI 
device approval is merely permission to use the device on 
patients and to bring it to the market for that purpose. In 
other words, although a certain level of safety and efficacy 
of the AI should be demonstrated (typically through 
technical performance validation), AI device approval 
does not indicate whether the AI device is beneficial or 
valuable for patient care [25,26,47]. Medical professionals 
involved in patient care should conduct further clinical 
validation and evaluation of the approved AI device to 
verify its clinical utility and ensure its safe and efficacious 
clinical application [47,48]. Moreover, as it is difficult 
to investigate all matters related to generalizability of 
the AI algorithm during the device-approval process, it is 
important to further clarify the circumstances under which 
the AI output is accurate/inaccurate.

These scientific principles are adopted in the Guidelines 
for Big Data- and AI-based Medical Device Approval revised 
and released by the MFDS for the general public. These 
guidelines state that the sample data used in clinical 
investigations for an AI-based device seeking device 
approval should comprise independent data sets other than 
those used during the product development process. In 
other words, external validation is required. Use of reliable 
retrospective data sets are allowed for the validation for 
device approval by MFDS, if appropriate. Applicants may 
decide whether a prospective or retrospective clinical study 
design is suitable for the product.

Insurance Coverage for AI-Based Medical Device
Regarding insurance coverage for AI-based devices, 

the Health Insurance Review and Assessment Service 
under the Korean Ministry of Health and Welfare released 
the Guidelines for the Evaluation for Medical Insurance 
Coverage for Innovative Medical Technology in December 
2019. These guidelines added some flexibility to the 
scientific principles of medical insurance coverage. They 
state that, when improved patient outcomes or significant 
improvement in diagnostic accuracy with the use of an AI-
based device compared to conventional care is verified, 
extra compensation through insurance coverage may be 
considered (the demonstration of cost-effectiveness is also 

included in the guidelines; we omit it because it is beyond 
the scope of this paper). While results from a prospective 
or retrospective research on patient outcomes adjusting 
for confounding variables or a randomized clinical trial is 
recommended for the evaluation, a diagnostic cohort study 
may also be accepted on a case-by-case basis for external 
validation of the clinical performance of AI. That is, for 
insurance coverage, clinical utility should be demonstrated 
in the form of improved patient outcomes; however, under 
certain circumstances, demonstration in a diagnostic 
cohort study of a significant improvement in diagnostic 
accuracy with the use of an AI-based device for a specific 
clinical condition/patient population may also satisfy the 
conditions for insurance coverage.

CONCLUSIONS

We examined the key principles of clinical validation, 
device approval, and insurance coverage of AI algorithms 
for medical diagnosis/prediction. When evaluating the 
discrimination performance of AI, the Dice similarity 
coefficient, sensitivity, specificity, ROC curve, and FROC 
curve are widely used. In the case of an AI algorithm 
presenting probability directly, calibration performance 
should be evaluated as well. Most currently available AI 
algorithms for medical diagnosis and prediction have 
limited generalizability to real-world healthcare settings 
of their performance shown in their development stage or 
through internal validation. This highlights the importance 
of external validation of performance in the clinical 
validation of AI algorithms. It should also be considered 
that AI is generally not meant to serve as a stand-
alone tool. It is an auxiliary tool providing information 
to the medical professional. For external validation of 
AI performance, diagnostic case-control and diagnostic 
cohort studies may be conducted. The former evaluates the 
technical performance of an AI algorithm, while the latter 
evaluates the clinical performance in samples representing 
the target patients in real-world clinical scenarios. The 
ultimate clinical validation of an AI algorithm lies in the 
evaluation of its effect on patient outcomes. A randomized 
clinical trial is ideal for this validation of clinical utility. AI-
device approval generally focuses on technical performance 
validation. Therefore, it is not used to determine whether 
the AI is beneficial for patient care and improves patient 
outcomes. Also, it is difficult to investigate all matters 
related to generalizability of the AI algorithm during the 
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device-approval process. After achieving device approval, 
it is up to medical professionals to determine whether 
the approved AI algorithms are beneficial for real-world 
patient care. To obtain insurance coverage, it is essential 
to demonstrate clinical utility in the form of improved 
patient outcomes. As the use of AI algorithms for medical 
diagnosis/prediction is likely to increase in the future, the 
topics discussed herein should be introduced into medical-
school curriculums [49].
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