• Title/Summary/Keyword: Diagnosis of performance

Search Result 1,555, Processing Time 0.028 seconds

Design and Implementation of IoT based Urination Management System (사물인터넷 기반의 배뇨관리 시스템 설계 및 구현)

  • Lee, Hak-Jai;Lee, Kyung-Hoon;Kim, Young-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.209-218
    • /
    • 2017
  • Healthcare services can be provided through a number of independent service platforms for measurement of vital signs, diagnosis and prevention of diseases, and Information and communication technology(ICT) such as internet and mobile are converged to provide health information to users at anytime and anywhere, and it is in the center of the IoT(Internet of things). Accordingly, in this paper, we designed IoT based urination management system and evaluate the performance. A low - power Zigbee network was constructed for the configuration of the urination management system. The implemented capacitive diaper sensor was operable for the duration of 2,000 hours. We also built a database server using Raspberry Pi, a tiny embedded device, and stored the collected data to verify the data through an Android-based mobile application. The proposed urination management system can be utilized not only for the older patients, but also for the infants.

Multi-constrained optimization combining ARMAX with differential search for damage assessment

  • K, Lakshmi;A, Rama Mohan Rao
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.689-712
    • /
    • 2019
  • Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.

The Implement of System on Microarry Classification Using Combination of Signigicant Gene Selection Method (정보력 있는 유전자 선택 방법 조합을 이용한 마이크로어레이 분류 시스템 구현)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.315-320
    • /
    • 2008
  • Nowadays, a lot of related data obtained from these research could be given a new present meaning to accomplish the original purpose of the whole research as a human genome project. In such a thread, construction of gene expression analysis system and a basis rank analysis system is being watched newly. Recently, being identified fact that particular sub-class of tumor be related with particular chromosome, microarray started to be used in diagnosis field by doing cancer classification and predication based on gene expression information. In this thesis, we used cDNA microarrays of 3840 genes obtained from neuronal differentiation experiment of cortical stem cells on white mouse with cancer, created system that can extract informative gene list through normalization separately and proposed combination method for selecting more significant genes. And possibility of proposed system and method is verified through experiment. That result is that PC-ED combination represent 98.74% accurate and 0.04% MSE, which show that it improve classification performance than case to experiment after generating gene list using single similarity scale.

Arrhythmia Classification using GAN-based Over-Sampling Method and Combination Model of CNN-BLSTM (GAN 오버샘플링 기법과 CNN-BLSTM 결합 모델을 이용한 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1490-1499
    • /
    • 2022
  • Arrhythmia is a condition in which the heart has an irregular rhythm or abnormal heart rate, early diagnosis and management is very important because it can cause stroke, cardiac arrest, or even death. In this paper, we propose arrhythmia classification using hybrid combination model of CNN-BLSTM. For this purpose, the QRS features are detected from noise removed signal through pre-processing and a single bit segment was extracted. In this case, the GAN oversampling technique is applied to solve the data imbalance problem. It consisted of CNN layers to extract the patterns of the arrhythmia precisely, used them as the input of the BLSTM. The weights were learned through deep learning and the learning model was evaluated by the validation data. To evaluate the performance of the proposed method, classification accuracy, precision, recall, and F1-score were compared by using the MIT-BIH arrhythmia database. The achieved scores indicate 99.30%, 98.70%, 97.50%, 98.06% in terms of the accuracy, precision, recall, F1 score, respectively.

Normal data based rotating machine anomaly detection using CNN with self-labeling

  • Bae, Jaewoong;Jung, Wonho;Park, Yong-Hwa
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.757-766
    • /
    • 2022
  • To train deep learning algorithms, a sufficient number of data are required. However, in most engineering systems, the acquisition of fault data is difficult or sometimes not feasible, while normal data are secured. The dearth of data is one of the major challenges to developing deep learning models, and fault diagnosis in particular cannot be made in the absence of fault data. With this context, this paper proposes an anomaly detection methodology for rotating machines using only normal data with self-labeling. Since only normal data are used for anomaly detection, a self-labeling method is used to generate a new labeled dataset. The overall procedure includes the following three steps: (1) transformation of normal data to self-labeled data based on a pretext task, (2) training the convolutional neural networks (CNN), and (3) anomaly detection using defined anomaly score based on the softmax output of the trained CNN. The softmax value of the abnormal sample shows different behavior from the normal softmax values. To verify the proposed method, four case studies were conducted, on the Case Western Reserve University (CWRU) bearing dataset, IEEE PHM 2012 data challenge dataset, PHMAP 2021 data challenge dataset, and laboratory bearing testbed; and the results were compared to those of existing machine learning and deep learning methods. The results showed that the proposed algorithm could detect faults in the bearing testbed and compressor with over 99.7% accuracy. In particular, it was possible to detect not only bearing faults but also structural faults such as unbalance and belt looseness with very high accuracy. Compared with the existing GAN, the autoencoder-based anomaly detection algorithm, the proposed method showed high anomaly detection performance.

The Study of Failure Mode Data Development and Feature Parameter's Reliability Verification Using LSTM Algorithm for 2-Stroke Low Speed Engine for Ship's Propulsion (선박 추진용 2행정 저속엔진의 고장모드 데이터 개발 및 LSTM 알고리즘을 활용한 특성인자 신뢰성 검증연구)

  • Jae-Cheul Park;Hyuk-Chan Kwon;Chul-Hwan Kim;Hwa-Sup Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.95-109
    • /
    • 2023
  • In the 4th industrial revolution, changes in the technological paradigm have had a direct impact on the maintenance system of ships. The 2-stroke low speed engine system integrates with the core equipment required for propulsive power. The Condition Based Management (CBM) is defined as a technology that predictive maintenance methods in existing calender-based or running time based maintenance systems by monitoring the condition of machinery and diagnosis/prognosis failures. In this study, we have established a framework for CBM technology development on our own, and are engaged in engineering-based failure analysis, data development and management, data feature analysis and pre-processing, and verified the reliability of failure mode DB using LSTM algorithms. We developed various simulated failure mode scenarios for 2-stroke low speed engine and researched to produce data on onshore basis test_beds. The analysis and pre-processing of normal and abnormal status data acquired through failure mode simulation experiment used various Exploratory Data Analysis (EDA) techniques to feature extract not only data on the performance and efficiency of 2-stroke low speed engine but also key feature data using multivariate statistical analysis. In addition, by developing an LSTM classification algorithm, we tried to verify the reliability of various failure mode data with time-series characteristics.

Multiple Relationships Between Impairment, Activity and Participation-based Clinical Outcome Measures in 200 Low Back Pain

  • Chanhee Park
    • Physical Therapy Korea
    • /
    • v.30 no.2
    • /
    • pp.136-143
    • /
    • 2023
  • Background: The International Classification of Functioning, Disability and Health (ICF) model, created by the World Health Organization, provides a theoretical framework that can be applied in the diagnosis and treatment of various disorders. Objects: Our research purposed to ascertain the relationship between structure/function, activity, and participation domain variables of the ICF and pain, pain-associated disability, activities of daily living (ADL), and quality of life in patients with chronic low back pain (LBP). Methods: Two-hundred patients with chronic LBP (mean age: 35.5 ± 8.8 years, females, n = 40) were recruited from hospital and community settings. We evaluated the body structure/function domain variable using the Numeric Pain Rating Scale (NPRS) and Roland-Morris disability (RMD) questionnaire. To evaluate the activity domain variable, we used the Oswestry Disability Index (ODI) and Quebec Back Pain Disability Scale (QBDS). For clinical outcome measures, we used Short-form 12 (SF-12). Pearson's correlation coefficient was used to ascertain the relationships among the variables (p < 0.05). All the participants with LBP received 30 minutes of conventional physical therapy 3 days/week for 4 weeks. Results: There were significant correlations between the body structure/function domain (NPRS and RMD questionnaire), activity domain (ODI and QBDS), and participation domain variables (SF-12), rending from pre-intervention (r = -0.723 to 0.783) and postintervention (r = -0.742 to 0.757, p < 0.05). Conclusion: The identification of a significant difference between these domain variables point to important relationships between pain, disability, performance of ADL, and quality in participants with LBP.

Development of Type 2 Prediction Prediction Based on Big Data (빅데이터 기반 2형 당뇨 예측 알고리즘 개발)

  • Hyun Sim;HyunWook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.999-1008
    • /
    • 2023
  • Early prediction of chronic diseases such as diabetes is an important issue, and improving the accuracy of diabetes prediction is especially important. Various machine learning and deep learning-based methodologies are being introduced for diabetes prediction, but these technologies require large amounts of data for better performance than other methodologies, and the learning cost is high due to complex data models. In this study, we aim to verify the claim that DNN using the pima dataset and k-fold cross-validation reduces the efficiency of diabetes diagnosis models. Machine learning classification methods such as decision trees, SVM, random forests, logistic regression, KNN, and various ensemble techniques were used to determine which algorithm produces the best prediction results. After training and testing all classification models, the proposed system provided the best results on XGBoost classifier with ADASYN method, with accuracy of 81%, F1 coefficient of 0.81, and AUC of 0.84. Additionally, a domain adaptation method was implemented to demonstrate the versatility of the proposed system. An explainable AI approach using the LIME and SHAP frameworks was implemented to understand how the model predicts the final outcome.

Application of Mask R-CNN Algorithm to Detect Cracks in Concrete Structure (콘크리트 구조체 균열 탐지에 대한 Mask R-CNN 알고리즘 적용성 평가)

  • Bae, Byongkyu;Choi, Yongjin;Yun, Kangho;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • Inspecting cracks to determine a structure's condition is crucial for accurate safety diagnosis. However, visual crack inspection methods can be subjective and are dependent on field conditions, thereby resulting in low reliability. To address this issue, this study automates the detection of concrete cracks in image data using ResNet, FPN, and the Mask R-CNN components as the backbone, neck, and head of a convolutional neural network. The performance of the proposed model is analyzed using the intersection over the union (IoU). The experimental dataset contained 1,203 images divided into training (70%), validation (20%), and testing (10%) sets. The model achieved an IoU value of 95.83% for testing, and there were no cases where the crack was not detected. These findings demonstrate that the proposed model realized highly accurate detection of concrete cracks in image data.

Design and Development of Distorted Source Device for Circuit Breakers Failure Analysis (차단기류 오동작 분석을 위한 전원왜형장치 설계 및 개발)

  • Lee, Sang-Ick;Yoo, Jae-Geun;Park, Jong-Chan;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.480-488
    • /
    • 2006
  • Up to recently the harmonic generation has deteriorated the quality of electricity and affected the performance on the electrical installation including OA, FA, IT devices and so on. Some studies of harmonic affects in diagnosis and the cause of accident has not done by the experimental data of harmonic source but merely by presumption according to qualitative analysis. So, in order to research the harmonic affect on the electrical installation according to quantitative analysis and gather reliable data over and over again, it is necessary to develop an AC power source which is capable of generating some harmonics. In this paper, we described about realization of AC power source which can produce and compose harmonics for the analysis of accident due to harmonics.