• Title/Summary/Keyword: Dexamethasone treatment

Search Result 243, Processing Time 0.026 seconds

Effect of Dexamethasone on the Surface Expression of Marker Molecules and Differentiation of Murine B Cells (덱사메타손이 생쥐 B세포의 세포 표면 인식자와 분화에 미치는 영향)

  • Yeo, Seung-Geun;Cha, Chang-Il;Park, Dong-Choon
    • IMMUNE NETWORK
    • /
    • v.6 no.3
    • /
    • pp.138-144
    • /
    • 2006
  • Background: There are at least two different subsets of B cells, B-1 and B-2. The characteristic features and function of B-2 cells in addition to the effect of steroids on B-2 cells are well-known. Although B-1 cells have different features and functions from B-2 cells, the effect of steroids on B-1 cells is not completely understood. Therefore, this study examined the effects of dexamethasone on peritoneal (or B-1 cells) and splenic B cells (or B-2 cells). Methods: Purified B cells were obtained from the peritoneal fluid and the spleens of mice. The isolated B cells were cultured in a medium and after adding different concentrations of dexamaethasone. The cell survival rate was measured by flow cytometry using propidium iodide. The expression level of the B cell surface marker was analyzed by flow cytometry. During the culture of these cells, immunoglobulin secreted into the culture supernatants was evaluated by an enzyme-linked immunosorbent assay. Results: The survival rate of peritoneal and splenic B cells decreased with increasing dexamethasone concentration. However, the rate of peritofieal B cell apoptosis was lower than that of splenic B cells. CDS and B7.1 expression in peritoneal B cells and CD23 and sIgM expression in splenic B cells after the dexamethasone treatment were reduced. When B cells were treated with dexamethasone, the spontaneous IgM secretion decreased with increasing dexamethasone concentration. Conclusion: Dexamethasone induces apoptosis in peritoneal and splenic B cells. However, peritoneal B cells are less sensitive to dexamethasone. The dexamethasone suppressed expression of the surface markers in peritoneal B cells is different from those in splenic B cells.

Maintenance of Proliferation and Adipogenic Differentiation by Fibroblast Growth Factor-2 and Dexamethasone Through Expression of Hepatocyte Growth Factor in Bone Marrow-derived Mesenchymal Stem Cells

  • Oh, Ji-Eun;Eom, Young Woo
    • Biomedical Science Letters
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Several studies have investigated the various effects of dexamethasone (Dex) on the proliferation and differentiation of mesenchymal stem cells (MSCs). Previously, we reported that co-treatment with L-ascorbic acid 2-phosphate and fibroblast growth factor (FGF)-2 maintained differentiation potential in MSCs through expression of hepatocyte growth factor (HGF). In this study, we investigated the effects of co-treatment with FGF-2 and Dex on the proliferation and differentiation potential of MSCs during a 2-month culture period. Co-treatment with FGF-2 and Dex increased approximately a 4.7-fold higher accumulation rate of MSC numbers than that by FGF-2 single treatment during a 2-month culture period. Interestingly, co-treatment with FGF-2 and Dex increased expression of HGF and maintained adipogenic differentiation potential during this culture period. These results suggest that co-treatment with FGF-2 and Dex preserves the proliferation and differentiation potential during long-term culture.

Effect of DHU001, a Polyherbal Formula, on Dinitrofluorobenzene-induced Contact Dermatitis (Type I allergy)

  • Lee, Hyeung-Sik;Lee, Byung-Chang;Ku, Sae-Kwang
    • Toxicological Research
    • /
    • v.26 no.2
    • /
    • pp.123-130
    • /
    • 2010
  • The effect of DHU001, a mixed herbal formula consisted of 7 types aqueous extracts for various respiratory disorders were evaluated on 2,4-dinitrofluorobenzene (DNFB)-induced contact dermatitis, type I allergic model. Contact dermatitis was induced by sensitization with dinitrophenyl-derivatized ovalbumin (DNP-OVA) and DNFB challenge as antigen. Two different dosages of DHU001 (300 and 150 mg/kg) were orally administered to DNP-OVA sensitization mice once a day for 7 days with reference material, dexamethasone (15 mg/kg, intraperitoneal treatment). End of 7 days oral administration of DHU001 extracts or intraperitoneal treatment of dexamethasone, the changes on the edematous changes and scratching behavior were measured. Immediate after DNFB challenge on ear or paw of DNP-OVA sensitized mice, increases of ear and paw thicknesses and weights were detected with anterior ear skin (dermis to epidermis) thickness and paw scratching behavior increases. However, these contact dermatitis signs induced by DNFB treatment were reduced by treatment of the both different dosages of DHU001 and dexamethasone, respectively. The results obtained in this study suggest that oral treatment of DHU001 extracts also has relatively favorable effects on contact dermatitis.

Effect of Perioperative Perineural Injection of Dexamethasone and Bupivacaine on a Rat Spared Nerve Injury Model

  • Lee, Jeong-Beom;Choi, Seong-Soo;Ahn, Eun-Hye;Hahm, Kyung-Don;Suh, Jeong-Hun;Leem, Jung-Gil;Shin, Jin-Woo
    • The Korean Journal of Pain
    • /
    • v.23 no.3
    • /
    • pp.166-171
    • /
    • 2010
  • Background: Neuropathic pain resulting from diverse causes is a chronic condition for which effective treatment is lacking. The goal of this study was to test whether dexamethasone exerts a preemptive analgesic effect with bupivacaine when injected perineurally in the spared nerve injury model. Methods: Fifty rats were randomly divided into five groups. Group 1 (control) was ligated but received no drugs. Group 2 was perineurally infiltrated (tibial and common peroneal nerves) with 0.4% bupivacaine (0.2 ml) and dexamethasone (0.8 mg) 10 minutes before surgery. Group 3 was infiltrated with 0.4% bupivacaine (0.2 ml) and dexamethasone (0.8 mg) after surgery. Group 4 was infiltrated with normal saline (0.2 ml) and dexamethasone (0.8 mg) 10 minutes before surgery. Group 5 was infiltrated with only 0.4% bupivacaine (0.2 ml) before surgery. Rat paw withdrawal thresholds were measured using the von Frey hair test before surgery as a baseline measurement and on postoperative days 3, 6, 9, 12, 15, 18 and 21. Results: In the group injected preoperatively with dexamethasone and bupivacaine, mechanical allodynia did not develop and mechanical threshold forces were significantly different compared with other groups, especially between postoperative days 3 and 9 (P < 0.05). Conclusions: In conclusion, preoperative infiltration of both dexamethasone and bupivacaine showed a significantly better analgesic effect than did infiltration of bupivacaine or dexamethasone alone in the spared nerve injury model, especially early on after surgery.

Dexamethasone induces the expression of LRRK2 and α-synuclein, two genes that when mutated cause Parkinson's disease in an autosomal dominant manner

  • Park, Ji-Min;Ho, Dong-Hwan;Yun, Hye Jin;Kim, Hye-Jung;Lee, Chan Hong;Park, Sung Woo;Kim, Young Hoon;Son, Ilhong;Seol, Wongi
    • BMB Reports
    • /
    • v.46 no.9
    • /
    • pp.454-459
    • /
    • 2013
  • LRRK2 (leucine-rich repeat kinase 2) has been identified as a gene corresponding to PARK8, an autosomal-dominant gene for familial Parkinson's disease (PD). LRRK2 pathogenic-specific mutants induce neurotoxicity and shorten neurites. To elucidate the mechanism underlying LRRK2 expression, we constructed the LRRK2-promoter-luciferase reporter and used it for promoter analysis. We found that the glucocorticoid receptor (GR) transactivated LRRK2 in a ligand-dependent manner. Using quantitative RT-PCR and Western analysis, we further showed that treatment with dexamethasone, a synthetic GR ligand, induced LRRK2 expression at both the transcriptional and translational levels, in dopaminergic MN9D cells. Dexamethasone treatment also increased expression of ${\alpha}$-synuclein, another PD causative gene, and enhanced transactivation of the ${\alpha}$-synuclein promoter-luciferase reporter. In addition, dexamethasone treatment to MN9D cells weakly induced cytotoxicity based on an LDH assay. Because glucocorticoid hormones are secreted in response to stress, our data suggest that stress might be a related factor in the pathogenesis of PD.

Synergistic Effect of Dexamethasone and Prolactin on VEGF Expression in Bovine Mammary Epithelial Cells via p44/p42 MAP Kinase

  • Nakajima, Kei-Ichi;Nakamura, Masato;Ishisaki, Akira;Kozakai, Takaharu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.788-795
    • /
    • 2009
  • Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis under various physiological and pathological conditions. We found that the VEGF isoforms VEGF120, VEGF164, and VEGF188 were expressed in the bovine mammary gland and bovine mammary epithelial cells (bMECs). Expression of VEGF in the mammary gland was significantly higher during the lactation period than during the dry period. Although dexamethasone or prolactin alone had little effect on the expression of VEGF, that in dexamethasone-treated cells was significantly induced after additional treatment with prolactin. Furthermore, the VEGF expression induced by the combination of dexamethasone and prolactin was reduced by PD98059 in a dose-dependent manner. This combination also stimulated the phosphorylation of p44/p42 MAP kinase in these cells. These results strongly suggest that the combination of dexamethasone and prolactin stimulates VEGF expression in bMECs via p44/p42 MAP kinase.

Dexamethasone treatment for bilateral lingual nerve injury following orotracheal intubation

  • Kim, Saeyoung;Chung, Seung-Yeon;Youn, Si-Jeong;Jeon, Younghoon
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.18 no.2
    • /
    • pp.115-117
    • /
    • 2018
  • Lingual nerve injury is a rare complication of general anesthesia. The causes of lingual nerve injury following general anesthesia are multifactorial; possible mechanisms may include difficult laryngoscopy, prolonged anterior mandibular displacement, improper placement of the oropharyngeal airway, macroglossia and tongue compression. In this report, we have described a case of bilateral lingual nerve injury that was associated with orotracheal intubation for open reduction and internal fixation of the left distal radius fracture in a 61-year-old woman. In this case, early treatment with dexamethasone effectively aided the recovery of the injured lingual nerve.

Addition of 2 mg dexamethasone to improve the anesthetic efficacy of 2% lidocaine with 1:80,000 epinephrine administered for inferior alveolar nerve block to patients with symptomatic irreversible pulpitis in the mandibular molars: a randomized double-blind clinical trial

  • Aggarwal, Vivek;Ahmad, Tanveer;Singla, Mamta;Gupta, Alpa;Saatchi, Masoud;Hasija, Mukesh;Meena, Babita;Kumar, Umesh
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.4
    • /
    • pp.305-314
    • /
    • 2022
  • Introduction: This clinical trial aimed to evaluate the anesthetic effect of the addition of 2 mg (4 mg/ml) of dexamethasone to 2% lidocaine (plain or with 1:80,000 epinephrine). The solutions were injected for a primary inferior alveolar nerve block (IANB) to provide mandibular anesthesia for the endodontic treatment of mandibular molars with symptomatic irreversible pulpitis. Methods: In a double-blinded setup, 124 patients randomly received either of the following injections: 2% lidocaine with 1:80,000 epinephrine, 2% lidocaine with 1:80,000 epinephrine mixed with 2 mg dexamethasone, or plain 2% lidocaine mixed with 2 mg dexamethasone, which were injected as a primary IANB. Ten minutes after injection, patients with profound lip numbness underwent electric and thermal pulp sensibility tests. Patients who responded positively to the tests were categorized as "failed" anesthesia and received supplemental anesthesia. The remaining patients underwent endodontic treatment using a rubber dam. Anesthetic success was defined as "no pain or faint/weak/mild pain" during endodontic access preparation and instrumentation (HP visual analog scale score < 55 mm). The effect of the anesthetic solutions on the maximum change in heart rate was also evaluated. The Pearson chi-square test at 5% and 1% significance was used to analyze anesthetic success rates. Results: The 2% lidocaine with 1:80,000 epinephrine, 2% lidocaine with 1:80,000 epinephrine mixed with 2 mg dexamethasone, and plain 2% lidocaine mixed with 2 mg dexamethasone groups had anesthetic success rates of 34%, 59%, and 29%, respectively. The addition of dexamethasone resulted in significantly better results (P < 0.001, 𝛘2 = 9.07, df = 2). Conclusions: The addition of dexamethasone to 2% lidocaine with epinephrine, administered as an IANB, can improve the anesthetic success rates during the endodontic management of symptomatic mandibular molars with irreversible pulpitis.

Effects of DSG on Osteoblastic Cell from Rat Calvariae in the Presence of Dexamethasone (단치소요산가미방이 Dexamethasone 처리한 랫드의 두개골 세포에 미치는 영향)

  • Park, Jong-Hyeong;Hwang, Gwi-Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.10 no.2
    • /
    • pp.19-30
    • /
    • 2006
  • It is well known that glucocorticoid may induce osteoporosis as its side effect in long-term therapy. The inhibition of osteoblast by glucocorticoid is also recognized as its action mechanism of decreased bone formation. In this study, the effect of DSG, Danchisoyosangamibang, on the differentiation and function of osteoblastic cells was investigated. The osteoblastic cells were isolated from rat calvariae using collagenase treatment. The cell counting, enzyme activity assay, MTT assay, collagen content assay were done to determine the cell proliferation, intracellular alkaline phosphatase (ALP) activity, bone martrix production, and cell apoptosis. DSG enhanced the cell proliferation after the culture for 10 days. ALP activity and total protein synthesis, and intracelluar collagen synthesis were increased time dependently when the cells were treated with DSG in the presence of dexamethasone. And, DSG restored calvarial cell function decreased by dexamethasone.

  • PDF

The Separate and Combined Effects of Insulin, Dexamethasone and Growth Hormone on the OB Gene Expression and Leptin Secretion from Cultured Human Visceral Adipose Tissue (인체의 복강 내 지방조직 배양을 통한 OB 유전자 발현과 Leptin 분비에 미치는 인슐린, Dexamethasone과 성장호르몬의 단독 또는 복합적 영향에 관한 연구)

  • Hwang, Il Tae;Kim, Kyung Hee;Hwang, Jin Soon;Shin, Choong Ho;Yang, Sei Won
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.8
    • /
    • pp.795-802
    • /
    • 2003
  • Purpose : We investigated the hormonal control of OB gene expression and leptin secretion in cultured human visceral adipose tissue. Methods : Visceral adipose tissues were cultured for up to 48 hrs in modified Eagle's medium with varying concentration of hormones : Control(no hormone), bovine insulin(100 nM), Dexamethasone(DEX, 100 nM), growth hormone(GH, 40 ng/mL), insulin+DEX(100 nM each), insulin+DEX+GH(100 nM insulin and DEX, 40 ng/mL GH). Quantitative analysis of leptin mRNA was performed by competitive reverse transcription polymerase chain reaction, and leptin secretion in culture medium was measured by IRMA using a commercial kit. Results : The addition of dexamethasone to the medium significantly increased OB gene expression and leptin secretion(P<0.05). Unlike dexamethasone, insulin did not affect OB gene expression and leptin secretion. Both insulin and dexamethasone, at high concentration, significantly stimulated leptin secretion compared with basal values(P<0.05). Leptin gene expression was not significantly increased by GH treatment alone, however GH, in combination with high concentrations of insulin and dexamethasone, attenuated the stimulatory effects of high concentrations of insulin and dexamethasone. Conclusion : Insulin cannot increase leptin secretion without the presence of dexamethasone. The mechanism suggested is that insulin may increase leptin secretion in cytoplasm only after dexamethasone increases the expression of OB gene. Further studies are necessary to elucidate the mechanism of the action of insulin on leptin secretion after increasing OB gene expression by dexamethasone.