• Title/Summary/Keyword: Dewatered sludge

Search Result 42, Processing Time 0.026 seconds

Treatment, Disposal and Beneficial Use Option for Sewage Sludge (하수슬러지 처리기술 동향 및 최적화 처리방안)

  • Choe, Yong-Su
    • 수도
    • /
    • v.24 no.5 s.86
    • /
    • pp.29-44
    • /
    • 1997
  • Sewage sludge produced in Korea was 1,275,800 tons (dewatered sludge cake) per year in 1996, which is 3,495 tons per day, 0.303% of 11,526,100 tons per day of sewage treated in 79 sewage treatment plants. Sludge production has been and will be increasing in accordance with construction of new facilities for sewage treatment. Most of the sludge is currently disposed by landfill and ocean dumping, but it is becoming difficult to find suitable sites for landfill, particularly in big cities such as Seoul. In addition, rapid increase of landfill cost is anticipated in a near future. Current trend for sludge disposal in advanced countries is land application. Over the past 10 to 20 years in the United States, sludge management practices have changed significantly, moving from disposal to beneficial use. They use biosolid for utilization instead of sludge for disposal. Under the Clean Water Act of 1972, amended in 1987 by Congress, the U.S. EPA was required to develop regulations for the use and disposal of sewage sludge. The EPA assessed the potential for pollutants in sewage sludge to affect public health and the environment through a number of different routes of exposure. The Agency also assessed the potential risk to human health through contamination of drinking water sources or surface water when sludge is disposed on land. The Final Rules were signed by the EPA Administrator and were published (Federal Register, 1993). These rules state that sewage sludge shall not be applied to land if the concentration of any pollutant in the sludge exceeds the ceiling concentration. In addition, the cumulative loading rate for each pollutant shall not exceed the cumulative pollutant loading rate nor should the concentration of each pollutant in the sludge exceed the monthly average concentration for the pollutant. The annual pollutant loading rate generally applies to applications of sewage sludge on agricultural lands. The most popular beneficial use of sewage sludge is land application. The sludge has to be stabilized for appling to land. One of the stabilization process for sewage sludge is lime stabilization process. The stabilization process is consisted of the stabilizing process and the drying process. Stabilization reactor can be a drum type reactor in which a crossed mixer is equipped. The additive agents are a very reactive mixture of calcium oxide and others. The stabilized sludge is dried in sun drier or rotary kiln.

  • PDF

Flow and Performance Analysis of Atomizing Nozzle (아토마이징 노즐의 유동 및 성능해석)

  • Kim, Bong-Hwan;Ryu, Kwang-Hyun;Jung, Eun-Ik;Cho, Eun-Man;Lee, Jung-Eun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.42-48
    • /
    • 2010
  • The aim of this study is to investigate the influence of driving atomizing nozzle position, the slope of sludge entering tube and supplying air flow rate on the performance of sludge air dryer. This paper deals with optimization of the geometry of the atomizing nozzle for sludge drying using computational fluid dynamics and drying performance test using pilot air dryer. The air drying system was composed of the atomizing nozzle which made high-speed fluid field. dewatered cake was crushed at the high-speed zone as the first step and formed intto dried powder of sphere shape by the collision between particles at the circling zone. The CFD analysis results show when the slope of entering sludge tube is smaller, suction air amount is increased. It is shown that the developed atomizing nozzle is very excellent in the drying performance through pilot test.

Estimation of Anaerobic Co-digestion Efficiency of Dewatered Sludge and Food waste using Thermo-Chemical Pre-Treatment (열화학적 전처리에 따른 탈수슬러지 및 음식물류폐기물의 병합혐기소화 효율 평가)

  • Lee, Wonbae;Park, Seyong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.27-40
    • /
    • 2022
  • In this study, the anaerobic digestion potential and thermo-chemical pre-treatment were evaluated for efficient anaerobic co-digestion of dewatered sludge(DS) and food waste(FW). As a result, the degradable organic matter concentration and methane yield of FW were evaluated to 2.2 and 1.3 times higher than that of DS, respectively. In order to increase the amount of biogas production, it was determined that it is desirable to increase the mixing ratio of FW. The efficiency of thermo-chemical pre-treatment was evaluated for the reaction temperature, NaOH concentration, reaction time and mixture ratio. As a result of evaluation through pre-treatment efficiency and dehydration capacity, the optimum pre-treatment conditions were evaluated as follows: reaction temperature 140℃, NaOH concentration 60 meq/L, reaction time 60 min, mixture ratio 1:5(DS:FW). The gas production rate and methane yield increased 1.6 and 1.5 times, respectively, compared to before and after applying the optimum pre-treatment. Therefore, it is necessary to increase the mixing ratio of food waste for efficient anaerobic co-digestion of DS and FW. and it is necessary to increase the solubilization efficiency of waste by application of pre-treatment.

Disintegration of sewage sludge using combined pre-treatment thermal hydrolysis and separation (열가수분해-고액분리 결합 공정을 적용한 하수슬러지의 가용화)

  • Lee, See-Young;Han, Ihn-Sup
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.107-114
    • /
    • 2021
  • This study applied with pre-treatment combined with thermal hydrolysis and seperation for disintegration of sludge. As results of particle size distribution D10, D50 and D90 of thermal hydrolyzed and centrifuged sludge was 8.6, 59.2 and 425.1 ㎛, which are lower than those of thermal hydrolyzed. The molecular weight distribution results showed that the thermal hydrolyzed sludge showed the highest proportion in the 10-100kDa range. But, Sludge, treated with combined pre-treatment, showed the highest proportion <1kDa range. Results of DOC and UVA254 found that the organic matters of hydrolyzed sludge composed high molecular weight component above 10kDa. While, the organic matters of sludge, treated by combined pre-treatment, composed relarively low molecular weight below 1kDa. The specific methane yield of hydrolyzed and centrifuged sludge was higher 1.7 times than that of only hydrolyzed sludge.

A Study for Developing the Thermal Dehydrator (고효율 열 탈수장치 개발에 관한 연구)

  • Lee, Jung-Eun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.35-40
    • /
    • 2004
  • A generation rate of sludge in Korea had increased dramatically about $200\%$ for a decade. A requirement for high efficiency dewatering system being possible to produce the low water content cake have suggested due to the appearance of commercial and social problems about handling of dewatered cake. The conventional dewatering system with mechanical compression device was not suitable to produce the low water content cake and didn't cope with lots of requirements. Therefore, this paper was to develop the high efficient filter press with the compressive and heating forces through the heating plate to be built between membrane fillet plates. It is possible to produce the low water content cake and improve the dewatering rate, so this equipment positively coped with several types of problems related to the sludge dewatering. The plate heated by heat transfer materials such as steam, hot water and thermo-oil made the sludge make the residual moisture within the cake to discharge easily and to improve the dewatering efficiency of equipment. The pilot scale experiment with 500kg of cake production showed that the dewatering efficiency determined by the final water content and dewatering velocity was improved $30\%$ more than the conventional dewatering equipment.

Efficient Dewatering of the Sewage Sludge by Electrodewatering System (전기탈수방법에 의한 하수 슬러지 탈수 특성)

  • Park, Chan-Jung;Lee, Jung-Eun;Ahn, Young-Chull;Shin, Hee-Soo;Lee, Jae-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.526-531
    • /
    • 2000
  • Application of electrodewatering (EDW) to mechanical dewatering system was studied to decrease water content in the sludge generated from waste water treatment process. Experiments realized the reduction of water content in the sewage sludge. EDW enhancing the conventional filtration by an electric field is an emerging technology with the potential to improve dewatering. In this study, a piston filter press was constructed, the digested sludges were dewatered by EDW under conditions of DC electric field and constant pressure in the piston filter press. Constant electric field from $0{\sim}120\;V/cm$ and constant pressure $98.1{\sim}392.4\;kPa$ were used. The results showed that as electric field was increased the dewatering rates increased and as pressure was increased the dewatering rates decreased. Also as polymer was added the dewatering rates increased. This experiments produced final sludge cake with water content of 60 wt% using EDW, compared with 80 wt% using pressure filtration alone.

  • PDF

Drying of Sewage Sludge Using Microwave Energy (도시하수 Sludge의 초고주파 건조)

  • 최병순;이동훈
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.40-46
    • /
    • 1997
  • Sludgc d~sposal has been a major challenge in the wastewater treatment. Drying is operation which is separated fromsewage sludge to solid and liquid by heating. Drying needs to pretreatment process for effective "thation, incinerationand dispaal The objective of this work was to the drying dewatered sewage sludge by microwave heating, and tocompare the experimental rcsults with thcorctical rcsults. Microwave drylng is fast and has a high efficiency. In thepresent \ark, an unsteady state analysis of one dunensional drying, with microwave heating, is carried out. In drying ratecurve, moisture movement at falling rate period occured by dfision. A good agreement was abtamed between the modcland the experimental results using the slab sample of 0.2cm thickness. 0.2cm thickness.

  • PDF

A Study for Developing the Thermal Dehydrator (고효율 열 탈수장치 개발에 관한 연구)

  • Lee, Jung-Eun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.278-283
    • /
    • 2003
  • A generation rate of sludge in Korea had increased dramatically about 200 % for a decade. A requirement for high efficiency dewatering system being possible to produce the low water content cake have suggested due to the appearanceof commercial and social problems about handling of dewatered cake. The conventional dewatering system with mechanical compression device was not suitable to produce the low water content cake and didn'tcope with lots of requirements. Therefore, this paper was to develop the high efficient filter press with the compressive and heating forces through the heating plate to be built between membrane filter plates. It is possible to produce the low water content cake and improve the dewatering rate, so this equipment positively coped with several types of problems related to the sludge dewatering. The plate heated by heat transfer materials such as steam, hot water and thermo-oil made the sludge make the residual moisture within the cake to discharge easilyand to improve the dewatering efficiency of equipment. The pilot scale experiment with 500kg of cake production showed that the dewatering efficiency determined by the final water content and dewatering velocity was improved 30% more than the conventional dewatering equipment.

  • PDF

A Study on Electrodewatering Filter Press Technology for Improvement of Dewarterability of Waterworks Sludge (정수슬러지 탈수효율 향상을 위한 전기필터프레스탈수에 관한 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1009-1015
    • /
    • 2006
  • The elcetrodewatering filter press(EDFP) which had anode and cathod plates to be set between filter plates was built for reducing the waterworks sludge and improving performance of dewatering equipment. Several tests to compare the dewaterability with conventional mechanical filter press dewatering(MDEP) and EDFP was conducted through this equipment. As test results, filtration amount discharged from EDFP measured 43.2 kg which increased against MDFP, and cake weight measured 4 kg which was two times against MDFP. The water content of dewatered cake from EDFP was 55wt% and dewatering velocity was 2.3 $kg/m^2{\cdot}cycle$. This water content decrease 20% and dewatering velocity increased 30% with compare to the MDFP. That is to say, EDFP constructed from electrodewatering mechanism increase filtrate discharging amount, which make dewatering velocity increase and produce the low water content dewatered cake against MDFP. Energy consumption of EDFP is analysed to 400 kwh/DS ton. The results to analysis the economical aspect considering the power consumption and the handling cost decline as sludge volume reduction due to producing the low water content cake showed that expenses to handle sludge of 1 ton by dry solid base cut down on 20,000 won. If considering several test aspects, it was analysed that EDFP was excellent in the side of performance as well as economical suitability.

Production of Soild Fuel from Organic Waste Sludge by Vacuum Frying (감압유탕공정을 이용한 유기성슬러지의 연료화)

  • Park, Sang-Sook;Kang, Hwa-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1347-1351
    • /
    • 2006
  • It was tried to utilize organic waste sludge from wastewater treatment plant as a starting material to produce a solid fuel by vacuum flying. The effects of decompression levels, frying time and temperature on the calorific value and moisture of vacuum fried sludge were systematically investigated. Dewatered raw sludge used in this study had a moisture of 81.1% and calorific value of 2,930 kcal/kg. Based on the experimental observation, it was identified that the decompression level and frying time have the greatest influence on the calorific value of vacuum fried sludge. Moistures of the fried sludge at $180^{\circ}C$ for 25 min in 760 mmHg, 684 mmHg and 630 mmHg were 32.4%, 14.2% and 11.6%, respectively. Calorific values of the vacuum fried sludge at $140^{\circ}C$ for 15 min and 25 min were 5,400 kcal/kg and 5,540 kcal/kg in 684 mmHg and 5,520 kcal/kg and 5,660 kcal/kg in 630 mmHg, respectively.