• Title/Summary/Keyword: Device authentication

Search Result 432, Processing Time 0.028 seconds

A Study on Providing Secure Storage and User Authentication Using MTM on Mobile Platform (모바일 플랫폼에서 MTM을 이용한 보안영역 제공 및 인증에 관한 연구)

  • Lee, Sun-Ho;Lee, Im-Yeong
    • The KIPS Transactions:PartC
    • /
    • v.18C no.5
    • /
    • pp.293-302
    • /
    • 2011
  • The various information services can be delivered by smartphone through advanced high-speed mobile communication. A smartphone is a mobile device that offers more powerful computing capacity than feature phone. Therefore this device can provide such as web surfing, editing documents, playing video, and playing games. A lot of personal information stored on smartphone. Because it has High usability. Personal information Leaks if the smart phone is lost or stolen may become a big problem. In this paper we have analyzed existing method for providing secure storage and user authentication on mobile platform and derived security requirement. Therefore we propose the following scheme that satisfy security requirement. Proposed scheme providing secure storage with preventing authentication bypass, and availability from damaged data to access secure area.

Per-transaction Shared Key Scheme to Improve Security on Smart Payment System

  • Ahmad, Fawad;Jung, Younchan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.1
    • /
    • pp.7-18
    • /
    • 2016
  • Several authentication methods have been developed to make use of tokens in the mobile networks and smart payment systems. Token used in smart payment system is genearated in place of Primary Account Number. The use of token in each payment transaction is advantageous because the token authentication prevents enemy from intercepting credit card number over the network. Existing token authentication methods work together with the cryptogram, which is computed using the shared key that is provisioned by the token service provider. Long lifetime and repeated use of shared key cause potential brawback related to its vulnerability against the brute-force attack. This paper proposes a per-transaction shared key mechanism, where the per-transaction key is agreed between the mobile device and token service provider for each smart payment transaction. From server viewpoint, per-transaction key list is easy to handle because the per-transaction key has short lifetime below a couple of seconds and the server does not need to maintain the state for the mobile device. We analyze the optimum size of the per-transaction shared key which satisfy the requirements for transaction latency and security strength for secure payment transactions.

Adaptive Convergence Security Policy and Management Technology of Home Network (홈 네트워크에서의 적응적 통합 보안 정책 및 관리 기술)

  • Lee, Sang-Joon;Kim, Yi-Kang;Ryu, Seung-Wan;Park, You-Jin;Cho, Choong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.72-81
    • /
    • 2011
  • In this paper, we propose adaptive convergence security policies and management technologies to improve security assurance in the home networking environment. Many security issues may arise in the home networking environment. Examples of such security issues include the user privacy, the service security, the integrated networking security, the middleware security and the device failure. All these security issues, however, should be fulfilled in phase due to many difficulties including deployment cost and technical complexity. For instance, fundamental security requirements such as authentication, access control and prevention of crime and disaster should be addressed first. Then, supplementary security policies and diverse security management technologies should be fulfilled. In this paper, we classify these requirements into three categories, a service authentication, a user authentication and a device authentication, and propose security policies and management technologies for each requirement. Since the home gateway is responsible for interconnection of many home devices and external network access, a variety of context information could be collected from such devices.

IoT Multi-Phase Authentication System Using Token Based Blockchain (블록체인 기반의 토큰을 이용한 IoT 다단계 인증 시스템)

  • Park, Hwan;Kim, Mi-sun;Seo, Jae-hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.6
    • /
    • pp.139-150
    • /
    • 2019
  • IoT(Internet of Things) security is becoming increasingly important because IoT potentially has a variety of security threats, including limited hardware specifications and physical attacks. This paper is a study on the certification technology suitable for the lightened IoT environment, and we propose a system in which many gateways share authentication information and issue authentication tokens for mutual authentication using blockchain. The IoT node can be issued an authentication token from one gateway to continuously perform authentication with a gateway in the block-chain network using an existing issued token without performing re-authentication from another gateway participating in the block-chain network. Since we do not perform re-authentication for other devices in a blockchain network with only one authentication, we proposed multi phase authentication consisting of device authentication and message authentication in order to enhance the authentication function. By sharing the authentication information on the blockchain network, it is possible to guarantee the integrity and reliability of the authentication token.

Device Security Bootstrapping Mechanism on the IEEE 802.15.4-Based LoWPAN (IEEE 802.15.4 기반 LoWPAN에서의 디바이스 보안 설정 메커니즘)

  • Lee, Jong-Hoon;Park, Chang-seop
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1561-1569
    • /
    • 2016
  • As the use of the sensor device increases in IoT environment, the need for device security is becoming more and more important When a sensor device is deployed in IEEE 802.15.4-based LoWPAN, it has to perform the join operation with PAN Coordinator and the binding operation with another device. In the join and binding process, authentication and key distribution of the device are performed using the pre-distributed network key or certificate. However, the network key used in the conventional method has problems that it's role is limited to the group authentication and individual identification is not applied in certificate issuing. In this paper, we propose a secure join and binding protocol in LoWPAN environment that solves the problems of pre-distributed network key.

User Authentication Mechanism using Smartphone (스마트폰을 이용한 사용자 인증 메커니즘)

  • Jeong, Pil-seong;Cho, Yang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.301-308
    • /
    • 2017
  • With the popularization of smart phones and the development of the Internet, many people use smart phones to conduct identity verification procedures. smart phones are easier and faster to authenticate than personal desktop computers. However, as Internet hacking technology and malicious code distribution technology rapidly evolve and attack types become more diverse, authentication methods suitable for mobile environment are required. As authentication methods, there are methods such as possessive-based authentication, knowledge-based authentication, biometric-based authentication, pattern-based authentication, and multi-element authentication. In this paper, we propose a user authentication mechanism that uses collected information as authentication factor using smart phone. Using the proposed authentication mechanism, it is possible to use the smart phone information and environment information of the user as a hidden authentication factor, so that the authentication process can be performed without being exposed to others. We implemented the user authentication system using the proposed authentication mechanism and evaluated the effectiveness based on applicability, convenience, and security.

A Study on the Correlation between Atypical Form Factor-based Smartphones and Display-dependent Authentication Methods (비정형 폼 팩터 기반 스마트폰과 디스플레이 의존형 사용자 인증기법의 상관관계 연구)

  • Choi, Dongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1076-1089
    • /
    • 2021
  • Among the currently used knowledge-based authentication methods for smartphones, text and graphic-based authentication methods, such as PIN and pattern methods, use a display unit and a touch function of the display unit for input/output of secret information. Recently released smartphone form factors are trying to transform into various forms, away from the conventional bar and slate types because of the material change of the display unit used in the existing smartphone and the increased flexibility of the display unit. However, as mentioned in the study of D. Choi [1], the structural change of the display unit may directly or indirectly affect the authentication method using the display unit as the main input/output device for confidential information, resulting in unexpected security vulnerabilities. In this paper, we analyze the security vulnerabilities of the current mobile user authentication methods that is applied atypical form factor. According to the analysis results, it seems that the existing display-dependent mobile user authentication methods do not consider emerging security threats at all. Furthermore, it is easily affected by changes in the form factor of smartphones. Finally, we propose countermeasures for security vulnerabilities expected when applying conventional authentication methods to atypical form factor-based smartphones.

A Study on Appropriate Device Authentication Scheme Based PKI for Exchangeable CAS (XCAS) (다운로드형 수신제한시스템(XCAS)에 적합한 PKI기반의 장치 인증기법에 대한 연구)

  • Hwang, Yu-Na;Jeong, Han-Jae;Won, Dong-Ho;Kim, Seung-Joo
    • The KIPS Transactions:PartC
    • /
    • v.17C no.4
    • /
    • pp.347-360
    • /
    • 2010
  • A condition access system (CAS) refers to a hardware-based system that allows only authenticated users to have access to contents. The CAS has many disadvantages found in that in the replacement of multiple service operator (MSO) a set-top box should be also changed and the smart-card often causes malfunction. To deal with the problems, exchangeable CAS (XCAS) was developed in 2009. However, in the XCAS, no method to authenticate a proper set-top box has been put forward. In this paper, we propose a novel program for set-top authentication in the XCAS. Additionally, we offer a format of certificate of authentication, and procedures of issuing the certificate for broadcasting services suitable for the XCAS. The technical method of authentication a set-top box that will be discussed is of high efficiency since in the MSO it requires only two subjects to communicate during the authentication in the MSO.

Building Control Box Attached Monitor based Color Grid Recognition Methods for User Access Authentication

  • Yoon, Sung Hoon;Lee, Kil Soo;Cha, Jae Sang;Khudaybergenov, Timur;Kim, Min Soo;Woo, Deok Gun;Kim, Jeong Uk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.1-7
    • /
    • 2020
  • The secure access the lighting, Heating, ventilation, and air conditioning (HVAC), fire safety, and security control boxes of building facilities is the primary objective of future smart buildings. This paper proposes an authorized user access to the electrical, lighting, fire safety, and security control boxes in the smart building, by using color grid coded optical camera communication (OCC) with face recognition Technologies. The existing CCTV subsystem can be used as the face recognition security subsystem for the proposed approach. At the same time a smart device attached camera can used as an OCC receiver of color grid code for user access authentication data sent by the control boxes to proceed authorization. This proposed approach allows increasing an authorization control reliability and highly secured authentication on accessing building facility infrastructure. The result of color grid code sequence received by the unauthorized person and his face identification allows getting good results in security and gaining effectiveness of accessing building facility infrastructure. The proposed concept uses the encoded user access authentication information through control box monitor and the smart device application which detect and decode the color grid coded informations combinations and then send user through the smart building network to building management system for authentication verification in combination with the facial features that gives a high protection level. The proposed concept is implemented on testbed model and experiment results verified for the secured user authentication in real-time.

Design of Security-Enhanced RFID Authentication Protocol Based on AES Cipher Algorithm (AES 암호 알고리듬 기반 보안성이 강화된 RFID 인증 프로토콜 설계)

  • Kang, Min-Sup
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.83-89
    • /
    • 2012
  • This paper proposes the design of a security-enhanced RFID authentication protocol which meets the privacy protection for tag bearers. The protocol which uses AES(Advanced Encryption Standard) cipher algorithm is based on a three-way challenge response authentication scheme. In addition, three different types of protocol packet formats are also presented by extending the ISO/IEC 18000-3 standard for realizing the security-enhanced authentication mechanism in RFID system environment. Through the comparison of security, it was shown that the proposed scheme has better performance in user data confidentiality, Man-in-the-middle replay attack, and replay attack, and forgery resistance, compared with conventional some protocols. In order to validate the proposed protocol, a digital Codec of RFID tag is also designed based on the protocol. This Codec has been described in Verilog HDL and also synthesized using Xilinx Virtex XCV400E device.