• 제목/요약/키워드: Development mechanism

검색결과 4,431건 처리시간 0.044초

Software Designing Simulator for Controlling Multiple-Mechanism Carrier System

  • Nakamura, Kotaro;Kumagai, Koji;Sato, Seiji;Sato, Shoichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.450-450
    • /
    • 2000
  • This paper presents a software design simulation method for controlling multiple mechanism carrier system (MMCS), which is mainly used in a wrapping machine or a case packing machine. This method uses a mechanical tool-work interactive model proposed in this paper, in order to represent the interactive behaviors between some tools and a work driven by their tools, in which low effect states of a work are defined. Based on this method, a 3-D simulation system has been built. It consists of shape modeling of each device, behavior definitions of tools, and control logic using if-then expression. By applying it to a ase packing machine having about 30 mechanical devices and 100 inputs/outputs for control, the effectiveness of this method has been shown in general verification of control logic specification in an early software design phase and the possibility of smooth communication tool between mechanical and software designers.

  • PDF

A Research on Stray-Current Corrosion Mechanism of High Voltage Cable Connector on Electrification Vehicles

  • Lee, Hwi Yong;Ahn, Seung Ho;Im, Hyun Taek
    • Corrosion Science and Technology
    • /
    • 제18권4호
    • /
    • pp.117-120
    • /
    • 2019
  • Considering the tendency of development of electrification vehicles, development and verification of new evaluation technology is needed because of new technology applications. Recently, as the battery package is set outdoors of an electric vehicle, such vehicles are exposed to corrosive environments. Among major components connected to the battery package, rust prevention of high-voltage cables and connectors is considered the most important issue. For example, if corrosion of high voltage cable connectors occurs, the corrosion durability assessment of using an electric vehicle will be different from general environmental corrosion phenomena. The purpose of this study is to investigate the corrosion mechanism of high voltage cable connectors of an electric vehicle under various driving environments (road surface vibration, corrosion environment, current conduction by stray current, etc.) and develop an optimal rust prevention solution. To improve our parts test method, we have proposed a realistic test method to reproduce actual electric vehicle corrosion issues based on the principle test.

A novel role of Hippo-Yap/TAZ signaling pathway in lymphatic vascular development

  • Cha, Boksik;Moon, Sungjin;Kim, Wantae
    • BMB Reports
    • /
    • 제54권6호
    • /
    • pp.285-294
    • /
    • 2021
  • The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.

예인체의 투하 및 인양 자동화를 위한 사변형 Overboarding Mechanism의 최적설계 (Optimal Design of Quadrilateral Typed-Overboarding Mechanism for Drop/Lift Automation of Towed Object)

  • 강석정;정원지;박성학;최종갑;김효곤;이준구
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.74-81
    • /
    • 2017
  • A crane is typically used as a means to lift and load equipment or materials. A surface vessel uses a towed object for underwater activity. Such a mechanism for dropping and lifting of equipment is necessary, and is called an overboarding unit. The present study is focused on the overboarding unit used for a crane structure. This paper deals with new overboarding mechanism design and GA-based $MATLAB^{(R)}$ optimization. By using a quadrilateral link mechanism, it is possible to set the constraint function for optimizing the GA method. The optimization with $MATLAB^{(R)}$ is followed by the $SolidWorks^{(R)}$ simulation and verification. When applying the proposed mechanism, the operator is expected to have a big advantage in safety and efficiency of operations. Furthermore, the technology developed in this study will be helpful in similar circumstances and in the proposed mechanism.

AMT용 새로운 변속자동 메커니즘 설계 및 해석 (Design and Analysis of a New Shift Automation Mechanism for Automated Manual Transmission)

  • 김정윤;김기대
    • 산업경영시스템학회지
    • /
    • 제34권4호
    • /
    • pp.66-71
    • /
    • 2011
  • This article proposes a novel shift automation mechanism for an automated manual transmission (AMT). The development of an automated manual transmission is currently being paid considerable attention by vehicle manufacturers, with the prospects of combining the comfort of an automatic transmission and the high efficiency of a manual transmission. In order to automate the shift mechanism of a manual transmission, the proposed shift automation mechanism consists of two electric motors, cross shaped pinion gears, rack type shift rails, and a ball splined hollow shaft. First we describe the shift mechanism and operating principles of a manual transmission to investigate important design criteria for the shift automation device. And a new shift automation mechanism is described with its structure, elements, and operating principles in detail. Using a conventional manual transmission, we develop a full three-dimensional CAD model of an AMT which includes main components of the manual transmission and the designed shift automation mechanism. Finally we investigate the operating performances and feasibility of the designed AMT by a dynamic analysis.

형상적응형 파지와 케이징 파지가 가능한 부족구동 기반 로봇 의수 메커니즘 개발 (Development of Under-actuated Robotic Hand Mechanism for Self-adaptive Grip and Caging Grasp)

  • 신민기;조장호;우현수;김기영
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.484-492
    • /
    • 2022
  • This paper presents a simple and robust under-actuated robotic finger mechanism that enables self-adaptive grip, fingertip pinch, and caging grasp functions. In order to perform daily activities using hands, the fingers should be able to perform adaptive gripping and pinching motion, and the caging grasp function is required to realize natural gripping motions and improve grip reliability. However, general commercial prosthetic hands cannot implement all three functions because they use under-actuation mechanism and simple mechanical structure to achieve light-weight and high robustness characteristic. In this paper, new mechanism is proposed that maintains structural simplicity and implements all the three finger functions with simple one degree-of-freedom control through a combination of a four-bar linkage mechanism and a wire-driven mechanism. The basic structure and operating principle of the proposed finger mechanism were explained, and simulation and experiments using the prototype were conducted to verify the gripping performance of the proposed finger mechanism.