• Title/Summary/Keyword: Developing

Search Result 28,084, Processing Time 0.056 seconds

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

Ground Security Activities for Prevention of Aviation Terrorism -Centered on San Francisco International Airport of the U.S.A.- (항공테러방지를 위한 지상 보안활동 -미국 샌프란시스코국제공항을 중심으로-)

  • Kang, Maeng-Jin;Kang, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.195-204
    • /
    • 2008
  • With the growth of airline management, as well as computer and IT security, the international trade in this modern society has been rapidly increasing, Along with the advancing, airplanes have become a universal means of communication. However, the complications associated with airplane safety have also been brought up as a result, the most concerning of which is terrorism. One of the main counterplans for preventing terrorism is Ground security activities the core of Ground security activities is absolute safety for passengers in both passenger terminal and freight terminal. Subastral security refers to physical protection, proximity control and 100% security search and freight guarding of the passengers' possessions, and the personnel's duties to perform such jobs are be! coming more crucial. On the other hand, Airport security check has bee n gradually developing since the 1960's, when hijacking began to take place. Although the airports have been providing more safe and comfortable services to their customers, terrorism is still happening today. When Ground security activities is minute, the users feel displeasure and discomfort, yet considering solely their convenience can brings problems in achieving safety. Since the 9.11 terror in 2001, the idea of improving and strengthening airport security was reinforced and a considerable amount of estate is being spent today for invention and application of new technology. Various nations, including the United States, have been improving their systems of security through public services; public police department is actively carrying out their duties in airports as well. In San Francisco International Airport, private police department is in charge of collection of data, national events, VIP protection, law enforcement, cooperation within facilities, daily-based patrol and traffic control. Under guidance and supervision of national organizations, such as TSA, general police department interprets X-Rays, operates metal detectors, checks passports or IDs and observes reactions to explosives. Under these circumstances, studies about advancement of cooperation and duties of general police department and private police department necessitated: especially about private police department and their training for searching equipments, decrease in number of turn over rate, invention of technology and prior settlement in estate for security. The privacy of the public, who make up the major population of airport passengers, must also be minimized. In the following research, the activities of police departments in San Francisco International Airport will be analyzed in order to understand recent actions of the United States on airport security.

A Study on the Development of a Microbial Insecticide -(With special emphasis on formulation)- (미생물(微生物) 살충제(殺蟲劑)의 개발(開發)에 관(關)한 연구(硏究) -(제제화(製劑化)를 중심(中心)으로)-)

  • Lee, Jae-Koo;Kim, Ki-Cheol;Kim, Do-Young
    • Applied Biological Chemistry
    • /
    • v.22 no.2
    • /
    • pp.123-134
    • /
    • 1979
  • For the purpose of developing a microbial insecticide utilizing Bacillus thuringiensis Berliner, research was done and the following results were obtained. 1) As the freeze-dried matter of the cocoon-cooked water discarded from the filature contains much crude protein(51.825%) and a lot of inorganic salts, it can make a good nutrition source for the culture cf B. thuringiensis Berliner. 2) Based on the suspensibility, formula F-5 turned out to be the most suitable for insecticidal use. Its composition includes 0.2 g of the cell-spore-crystal mixture, 25 g of 200-mesh kaolin, 2.5 g of New Kalgen-NX-150, and 2.5 g of glycerine admixed with 8 ml of distilled water and granulated in 80-mesh size. 3) All the components of F-5, F-6 and F-7 are identical except that the amounts of cell-spore-crystal mixture of F-5, F-6, and F-7 are 0.2 g, 0.4 g, and 0.6 g, respectively. Accordingly, their physical properties are almost all the same. 4) Formulas F-5, F-6, and F-7 exhibited an excellent toxicity to Anomis mesogona Walker, Dendrolimus spectabilis Butler, and Margaronia perspectalis Walker at the concentration of 5%. 5) Formulas F-8 and F-9 which contain $NaHCO_3$ as one of their components showed a remarkably reduced toxicity to Anomis mesogona Walker and Dendrolimus spectabilis Butler than F-6 which does not contain $NaHCO_3$. 6) A maximum of $2.97{\times}10^9$ spores per ml was obtained by incubating B. thuringiensis in M-3 which has a pH of 7.05 and comprises 0.2% of ammonium sulphate and 0.8% of glucose dissolved in the cocoon-cooked water, with aeration for 96 hours. 7) Formula F-6 exhibited a somewhat reduced toxicity to Anomis mesogona Walker and Dendrolimus spectabilis Butler, when stored at room temperature for 70 days after formulation and it is desirable to keep it in a dark and cold place. 8) In held applications, formula F-6 showed a good activity in controlling Monema flavescens Walker. Margaronia perspectalis Walker, and Macrosiphum ibarae Matsumura.

  • PDF

The Evolution of Cyber Singer Viewed from the Coevolution of Man and Machine (인간과 기계의 공진화적 관점에서 바라본 사이버가수의 진화과정)

  • Kim, Dae-Woo
    • Cartoon and Animation Studies
    • /
    • s.39
    • /
    • pp.261-295
    • /
    • 2015
  • Cyber singer appeared in the late 1990s has disappeared briefly appeared. although a few attempts in the 2000s, it did not show significant successes. cyber singer was born thanks to the technical development of the IT industry and the emergence of an idol training system in the music industry. It was developed by Vocaloid 'Seeyou' starting from 'Adam'. cyber singer that differenatiated typical digital characters in a cartoon or game may be subject to idolize to the music as a medium. They also feature forming a plurality of fandom. therefore, such attempts and repeated failures, this could be considered a fashion, but it flew content creation and ongoing attempts to take advantage of the new media, such as Vocaloid can see that there are expectations for a true Cyber-born singer. Early-Cyber singer is made only resemble human appearance, but 'Sciart' and 'Seeyou' has been evolving to becoming more like the human capabilities. in this paper, stylized cyber singer had disappeared in the past in the process of developing the technology to evolve into own artificial life does not end in failure cases, gradually led to a change in public perceptions of the image look looking machine was an attempt in that sense. With the direction of the evolution of the mechanical function to obtain a human, fun and human exchanges and mutual feelings. And it is equipped with an artificial life form that evolved with it only in appearance and function. in order to support this logic, I refer to the study of the coevolution of man and machine at every Bruce Mazlish. And, I have analyzed the evolution of cyber singer Bruce research from the perspective of the development process since the late 1990s, the planning of the eight singers who have appeared and design of the cyber character and important voices to be evaluated as a singer (vocal). The machine has been evolving coevolution with humans. cyber singer ambivalent development targets are recognized, but strive to become the new artificial creatures of horror idea of human desire and death continues. therefore, the new Cyber-organisms are likely to be the same style as 'Seeyou'. because, cartoon forms and whirring voice may not be in the form of a signifier is the real human desires, but this is because the contemporary public's desire to be desired and the technical development of this type can be created at the point where the cross-signifier.

Text Mining-Based Emerging Trend Analysis for the Aviation Industry (항공산업 미래유망분야 선정을 위한 텍스트 마이닝 기반의 트렌드 분석)

  • Kim, Hyun-Jung;Jo, Nam-Ok;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.65-82
    • /
    • 2015
  • Recently, there has been a surge of interest in finding core issues and analyzing emerging trends for the future. This represents efforts to devise national strategies and policies based on the selection of promising areas that can create economic and social added value. The existing studies, including those dedicated to the discovery of future promising fields, have mostly been dependent on qualitative research methods such as literature review and expert judgement. Deriving results from large amounts of information under this approach is both costly and time consuming. Efforts have been made to make up for the weaknesses of the conventional qualitative analysis approach designed to select key promising areas through discovery of future core issues and emerging trend analysis in various areas of academic research. There needs to be a paradigm shift in toward implementing qualitative research methods along with quantitative research methods like text mining in a mutually complementary manner. The change is to ensure objective and practical emerging trend analysis results based on large amounts of data. However, even such studies have had shortcoming related to their dependence on simple keywords for analysis, which makes it difficult to derive meaning from data. Besides, no study has been carried out so far to develop core issues and analyze emerging trends in special domains like the aviation industry. The change used to implement recent studies is being witnessed in various areas such as the steel industry, the information and communications technology industry, the construction industry in architectural engineering and so on. This study focused on retrieving aviation-related core issues and emerging trends from overall research papers pertaining to aviation through text mining, which is one of the big data analysis techniques. In this manner, the promising future areas for the air transport industry are selected based on objective data from aviation-related research papers. In order to compensate for the difficulties in grasping the meaning of single words in emerging trend analysis at keyword levels, this study will adopt topic analysis, which is a technique used to find out general themes latent in text document sets. The analysis will lead to the extraction of topics, which represent keyword sets, thereby discovering core issues and conducting emerging trend analysis. Based on the issues, it identified aviation-related research trends and selected the promising areas for the future. Research on core issue retrieval and emerging trend analysis for the aviation industry based on big data analysis is still in its incipient stages. So, the analysis targets for this study are restricted to data from aviation-related research papers. However, it has significance in that it prepared a quantitative analysis model for continuously monitoring the derived core issues and presenting directions regarding the areas with good prospects for the future. In the future, the scope is slated to expand to cover relevant domestic or international news articles and bidding information as well, thus increasing the reliability of analysis results. On the basis of the topic analysis results, core issues for the aviation industry will be determined. Then, emerging trend analysis for the issues will be implemented by year in order to identify the changes they undergo in time series. Through these procedures, this study aims to prepare a system for developing key promising areas for the future aviation industry as well as for ensuring rapid response. Additionally, the promising areas selected based on the aforementioned results and the analysis of pertinent policy research reports will be compared with the areas in which the actual government investments are made. The results from this comparative analysis are expected to make useful reference materials for future policy development and budget establishment.

Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution (불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측)

  • Kim, Eunmi;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.29-45
    • /
    • 2015
  • Response modeling is a well-known research issue for those who have tried to get more superior performance in the capability of predicting the customers' response for the marketing promotion. The response model for customers would reduce the marketing cost by identifying prospective customers from very large customer database and predicting the purchasing intention of the selected customers while the promotion which is derived from an undifferentiated marketing strategy results in unnecessary cost. In addition, the big data environment has accelerated developing the response model with data mining techniques such as CBR, neural networks and support vector machines. And CBR is one of the most major tools in business because it is known as simple and robust to apply to the response model. However, CBR is an attractive data mining technique for data mining applications in business even though it hasn't shown high performance compared to other machine learning techniques. Thus many studies have tried to improve CBR and utilized in business data mining with the enhanced algorithms or the support of other techniques such as genetic algorithm, decision tree and AHP (Analytic Process Hierarchy). Ahn and Kim(2008) utilized logit, neural networks, CBR to predict that which customers would purchase the items promoted by marketing department and tried to optimized the number of k for k-nearest neighbor with genetic algorithm for the purpose of improving the performance of the integrated model. Hong and Park(2009) noted that the integrated approach with CBR for logit, neural networks, and Support Vector Machine (SVM) showed more improved prediction ability for response of customers to marketing promotion than each data mining models such as logit, neural networks, and SVM. This paper presented an approach to predict customers' response of marketing promotion with Case Based Reasoning. The proposed model was developed by applying different weights to each feature. We deployed logit model with a database including the promotion and the purchasing data of bath soap. After that, the coefficients were used to give different weights of CBR. We analyzed the performance of proposed weighted CBR based model compared to neural networks and pure CBR based model empirically and found that the proposed weighted CBR based model showed more superior performance than pure CBR model. Imbalanced data is a common problem to build data mining model to classify a class with real data such as bankruptcy prediction, intrusion detection, fraud detection, churn management, and response modeling. Imbalanced data means that the number of instance in one class is remarkably small or large compared to the number of instance in other classes. The classification model such as response modeling has a lot of trouble to recognize the pattern from data through learning because the model tends to ignore a small number of classes while classifying a large number of classes correctly. To resolve the problem caused from imbalanced data distribution, sampling method is one of the most representative approach. The sampling method could be categorized to under sampling and over sampling. However, CBR is not sensitive to data distribution because it doesn't learn from data unlike machine learning algorithm. In this study, we investigated the robustness of our proposed model while changing the ratio of response customers and nonresponse customers to the promotion program because the response customers for the suggested promotion is always a small part of nonresponse customers in the real world. We simulated the proposed model 100 times to validate the robustness with different ratio of response customers to response customers under the imbalanced data distribution. Finally, we found that our proposed CBR based model showed superior performance than compared models under the imbalanced data sets. Our study is expected to improve the performance of response model for the promotion program with CBR under imbalanced data distribution in the real world.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

An Investigation on Expanding Co-occurrence Criteria in Association Rule Mining (연관규칙 마이닝에서의 동시성 기준 확장에 대한 연구)

  • Kim, Mi-Sung;Kim, Nam-Gyu;Ahn, Jae-Hyeon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.23-38
    • /
    • 2012
  • There is a large difference between purchasing patterns in an online shopping mall and in an offline market. This difference may be caused mainly by the difference in accessibility of online and offline markets. It means that an interval between the initial purchasing decision and its realization appears to be relatively short in an online shopping mall, because a customer can make an order immediately. Because of the short interval between a purchasing decision and its realization, an online shopping mall transaction usually contains fewer items than that of an offline market. In an offline market, customers usually keep some items in mind and buy them all at once a few days after deciding to buy them, instead of buying each item individually and immediately. On the contrary, more than 70% of online shopping mall transactions contain only one item. This statistic implies that traditional data mining techniques cannot be directly applied to online market analysis, because hardly any association rules can survive with an acceptable level of Support because of too many Null Transactions. Most market basket analyses on online shopping mall transactions, therefore, have been performed by expanding the co-occurrence criteria of traditional association rule mining. While the traditional co-occurrence criteria defines items purchased in one transaction as concurrently purchased items, the expanded co-occurrence criteria regards items purchased by a customer during some predefined period (e.g., a day) as concurrently purchased items. In studies using expanded co-occurrence criteria, however, the criteria has been defined arbitrarily by researchers without any theoretical grounds or agreement. The lack of clear grounds of adopting a certain co-occurrence criteria degrades the reliability of the analytical results. Moreover, it is hard to derive new meaningful findings by combining the outcomes of previous individual studies. In this paper, we attempt to compare expanded co-occurrence criteria and propose a guideline for selecting an appropriate one. First of all, we compare the accuracy of association rules discovered according to various co-occurrence criteria. By doing this experiment we expect that we can provide a guideline for selecting appropriate co-occurrence criteria that corresponds to the purpose of the analysis. Additionally, we will perform similar experiments with several groups of customers that are segmented by each customer's average duration between orders. By this experiment, we attempt to discover the relationship between the optimal co-occurrence criteria and the customer's average duration between orders. Finally, by a series of experiments, we expect that we can provide basic guidelines for developing customized recommendation systems. Our experiments use a real dataset acquired from one of the largest internet shopping malls in Korea. We use 66,278 transactions of 3,847 customers conducted during the last two years. Overall results show that the accuracy of association rules of frequent shoppers (whose average duration between orders is relatively short) is higher than that of causal shoppers. In addition we discover that with frequent shoppers, the accuracy of association rules appears very high when the co-occurrence criteria of the training set corresponds to the validation set (i.e., target set). It implies that the co-occurrence criteria of frequent shoppers should be set according to the application purpose period. For example, an analyzer should use a day as a co-occurrence criterion if he/she wants to offer a coupon valid only for a day to potential customers who will use the coupon. On the contrary, an analyzer should use a month as a co-occurrence criterion if he/she wants to publish a coupon book that can be used for a month. In the case of causal shoppers, the accuracy of association rules appears to not be affected by the period of the application purposes. The accuracy of the causal shoppers' association rules becomes higher when the longer co-occurrence criterion has been adopted. It implies that an analyzer has to set the co-occurrence criterion for as long as possible, regardless of the application purpose period.

Development of Customer Sentiment Pattern Map for Webtoon Content Recommendation (웹툰 콘텐츠 추천을 위한 소비자 감성 패턴 맵 개발)

  • Lee, Junsik;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.67-88
    • /
    • 2019
  • Webtoon is a Korean-style digital comics platform that distributes comics content produced using the characteristic elements of the Internet in a form that can be consumed online. With the recent rapid growth of the webtoon industry and the exponential increase in the supply of webtoon content, the need for effective webtoon content recommendation measures is growing. Webtoons are digital content products that combine pictorial, literary and digital elements. Therefore, webtoons stimulate consumer sentiment by making readers have fun and engaging and empathizing with the situations in which webtoons are produced. In this context, it can be expected that the sentiment that webtoons evoke to consumers will serve as an important criterion for consumers' choice of webtoons. However, there is a lack of research to improve webtoons' recommendation performance by utilizing consumer sentiment. This study is aimed at developing consumer sentiment pattern maps that can support effective recommendations of webtoon content, focusing on consumer sentiments that have not been fully discussed previously. Metadata and consumer sentiments data were collected for 200 works serviced on the Korean webtoon platform 'Naver Webtoon' to conduct this study. 488 sentiment terms were collected for 127 works, excluding those that did not meet the purpose of the analysis. Next, similar or duplicate terms were combined or abstracted in accordance with the bottom-up approach. As a result, we have built webtoons specialized sentiment-index, which are reduced to a total of 63 emotive adjectives. By performing exploratory factor analysis on the constructed sentiment-index, we have derived three important dimensions for classifying webtoon types. The exploratory factor analysis was performed through the Principal Component Analysis (PCA) using varimax factor rotation. The three dimensions were named 'Immersion', 'Touch' and 'Irritant' respectively. Based on this, K-Means clustering was performed and the entire webtoons were classified into four types. Each type was named 'Snack', 'Drama', 'Irritant', and 'Romance'. For each type of webtoon, we wrote webtoon-sentiment 2-Mode network graphs and looked at the characteristics of the sentiment pattern appearing for each type. In addition, through profiling analysis, we were able to derive meaningful strategic implications for each type of webtoon. First, The 'Snack' cluster is a collection of webtoons that are fast-paced and highly entertaining. Many consumers are interested in these webtoons, but they don't rate them well. Also, consumers mostly use simple expressions of sentiment when talking about these webtoons. Webtoons belonging to 'Snack' are expected to appeal to modern people who want to consume content easily and quickly during short travel time, such as commuting time. Secondly, webtoons belonging to 'Drama' are expected to evoke realistic and everyday sentiments rather than exaggerated and light comic ones. When consumers talk about webtoons belonging to a 'Drama' cluster in online, they are found to express a variety of sentiments. It is appropriate to establish an OSMU(One source multi-use) strategy to extend these webtoons to other content such as movies and TV series. Third, the sentiment pattern map of 'Irritant' shows the sentiments that discourage customer interest by stimulating discomfort. Webtoons that evoke these sentiments are hard to get public attention. Artists should pay attention to these sentiments that cause inconvenience to consumers in creating webtoons. Finally, Webtoons belonging to 'Romance' do not evoke a variety of consumer sentiments, but they are interpreted as touching consumers. They are expected to be consumed as 'healing content' targeted at consumers with high levels of stress or mental fatigue in their lives. The results of this study are meaningful in that it identifies the applicability of consumer sentiment in the areas of recommendation and classification of webtoons, and provides guidelines to help members of webtoons' ecosystem better understand consumers and formulate strategies.

Analyzing Mutual Relationships Between Nectar Plants and Butterflies for Landscape Design - Focusing on World Cup Park, Seoul - (나비와 흡밀식물과의 관계 분석을 통한 조경설계에의 활용방안 연구 - 서울 월드컵공원을 대상으로 -)

  • Kim, Ji-Seok;Kang, Hyun-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.1
    • /
    • pp.11-21
    • /
    • 2011
  • In this paper, in order to select specialist butterfly species that inhabit Haneul and Noeul Parks, previously landfill areas, we verified the reciprocal relationships between nectar plants and butterflies. While we will design the butterfly habitats, this paper will provide the foundation data for selecting the plants. The completed survey indicated that there were a total of 5 families, 23 species and 1,129 individuals. Butterflies of the main action were feeding on nectar, and such behavior was 36% of the total actions. Therefore, these parks play an important role in butterflies feeding on nectar. The correlation between butterflies and the nectar plants' color was not significant; Therefore, it is not necessary to consider flower color when choosing plants to attract the butterflies. In addition, butterflies prefer naturalized plants for feeding on nectar. Thus, when creating butterfly habitats, there is no use in attracting the butterflies by classifying the naturalized plants and native plants. However, if some areas that are need to plant native plants such as Inkigofera pseudo-tinctoria, Lespedeza bicolor, Aster koraiensis make use it, there could be taken an advantage to attract the butterflies. According to the algebraic curve model of curve estimation regression analysis, we were able to classify the generalist species and specialist species by regression analysis. As a result, Colias erate, Artogeia rapae and Parnara guttata were classified as generalist species, where as Rapala caerulea, Pieris melete, Zizera maha and Celastrina argiolus were classified as specialist species. Rapala caerulea prefers hills and forest for its habitat; therefore, it is clearly distinct from Pieris melete, Zizera maha and Celastrina argiolus which prefer grassland for habitats. These results show that Rapala caerulea is high conservation value in a landfill area where is developing ecological succession from grasslands to wood lands. In conclusion, these research are able to contribute to select the target species and suitable species that consider a singularity between butterflies and nectar plants, when we are creating the butterfly habitats, moreover these research will contribute to maintain a stable habitats.