• 제목/요약/키워드: Developed side shear

검색결과 69건 처리시간 0.018초

Retrofitting by adhesive bonding steel plates to the sides of R.C. beams. Part 2: Debonding of plates due to shear and design rules

  • Oehlers, Deric. J.;Nguyen, Ninh T.;Bradford, Mark A.
    • Structural Engineering and Mechanics
    • /
    • 제9권5호
    • /
    • pp.505-518
    • /
    • 2000
  • A major cause of premature debonding of tension face plates is shear peeling (Jones et al. 1988, Swamy et al. 1989, Ziraba et al. 1994, Zhang et al. 1995), that is debonding at the plate ends that is associated with the formation of shear diagonal cracks that are caused by the action of vertical shear forces. It is shown in this paper how side plated beams are less prone to shear peeling than tension face plated beams, as the side plate automatically increases the resistance of the reinforced concrete beam to shear peeling. Tests are used to determine the increase in the shear peeling resistance that the side plates provide, and also the effect of vertical shear forces on the pure flexural peeling strength that was determined in the companion paper. Design rules are then developed to prevent premature debonding of the plate ends due to peeling and they are applied to the strengthening and stiffening of continuous reinforced concrete beams. It is shown how these design rules for side plated beams can be adapted to allow for propped and unpropped construction and the time effects of creep and shrinkage, and how side plates can be used in conjunction with tension face plates.

3차원 수치해석을 이용한 점토지반에 설치된 석션파일 인발 시 발현되는 전단응력에 관한 연구 (A Study on the Side Shear Developed during Pullout of Suction Pile in Clays using 3D Numerical Analysis)

  • 이명재;윤희정
    • 한국지반환경공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.59-66
    • /
    • 2014
  • 본 논문에서는 석션파일의 인발거동을 조사하기 위해 유한차분법 상용 프로그램인 FLAC3D를 이용하여 수치해석을 수행하였다. 석션파일의 인발지지력을 전통적인 지지력 식을 이용하여 구하고, 이 값을 파일의 직경, 길이, 그리고 주변 점토의 비배수 전단강도를 변수로 하는 수치해석을 통한 해석 값과 비교하였다. 총 24개의 수치해석 결과를 바탕으로 석션파일의 인발파괴는 석션파일의 배수조건뿐만 아니라 파일의 제원과 주변 지반의 물성값에 의해 형태가 결정되는 것으로 밝혀졌다. 수치해석 결과로부터 석션파일 내부 주면에 발현되는 전단응력을 구하여 활동파괴와 인장파괴 중 어떤 파괴가 발생할 것인지를 결정하는데 사용하였다. 외부주면의 전단응력과 관계없이 높은 내부 전단응력을 얻은 경우 수치해석 내에서 활동파괴가 발생하는 경우가 많았으며, 이는 전통적인 지지력 공식으로부터 얻은 예측과 잘 맞았다.

현장타설말뚝의 전단강도 조정계수 결정법 (Determination of Shear Strength Modification Factors in Drilled Shaft)

  • Kim, Myung-Hak;Michael W. O'Neill
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.193-200
    • /
    • 1999
  • 팽창토에 설치된 직경 305 mm 현장타설말뚝의 18개월간에 걸친 거동을 관찰하였다. 계절적 함수량 변화에 따른 말뚝주변 흙의 부피 변화가 발생시킨 말뚝의 인발력을 측정하였고, 측정한 인발력에서 말뚝 단위 표면적당의 전단 응력을 계산하였다. 본 실험 말뚝에서는 최대 전단 응력은 54 kPa이 계산되었다.

  • PDF

A new refined hyperbolic shear deformation theory for laminated composite spherical shells

  • Kada, Draiche;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.707-722
    • /
    • 2022
  • In this study, a new refined hyperbolic shear deformation theory (RHSDT) is developed using an equivalent single-layer shell displacement model for the static bending and free vibration response of cross-ply laminated composite spherical shells. It is based on a new kinematic in which the transverse displacement is approximated as a sum of the bending and shear components, leading to a reduction of the number of unknown functions and governing equations. The proposed theory uses the hyperbolic shape function to account for an appropriate distribution of the transverse shear strains through the thickness and satisfies the boundary conditions on the shell surfaces without requiring any shear correction factors. The shell governing equations for this study are derived in terms of displacement from Hamilton's principle and solved via a Navier-type analytical procedure. The validity and high accuracy of the present theory are ascertained by comparing the obtained numerical results of displacements, stresses, and natural frequencies with their counterparts generated by some higher-order shear deformation theories. Further, a parametric study examines in detail the effect of both geometrical parameters (i.e., side-to-thickness ratio and curvature-radius-to-side ratio), on the bending and free vibration response of simply supported laminated spherical shells, which can be very useful for many modern engineering applications and their optimization design.

3-D 칩 만곡의 굽힘응력에 관한 연구 (A Study of Bending Stress for the 3-D Chip Curl)

  • 윤주식;김우순;김경우;김동현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.730-734
    • /
    • 2000
  • Once the Chip has developed a mixed mode of side-curl and up-curl, it would generally curl to strike the too] flank. The development of the bending stresses and shear in the chip would ultimately lead to chip failure. This paper attacks this problem from a mechanics-based approach. by treating the chip as a 3-D elastic curved beam, and applying appropriate constraints and forces. The expressions for bending. shear and direct stresses are developed through an energy-based criterion. The location of the maximum stresses is also identified and explained for simulated test conditions.

  • PDF

Strength of connection fixed by TOBs considering out-of-plane tube wall deformation-Part 1: Tests and numerical studies

  • Wulan, Tuoya;Wang, Peijun;Xia, Chengxin;Liu, Xinyu;Liu, Mei;Liu, Fangzhou;Zhao, Ou;Zhang, Lulu
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.49-57
    • /
    • 2022
  • This paper presents a study on the behavior of a bolted T-stub to square tube connection using Thread-fixed One-side Bolts (TOBs) through tests and numerical simulations. It outlines a research work of four connections with focus on the failure modes and strengths of the connection under tensile load. It was observed that the thread anchor failure caused by shear failure of hole threads controlled the final failure of the connection in the tests. Meanwhile, the out-of-plane deformation of tube wall resulted in the contact separation between hole threads and bolt threads, which in turn reduced the shear strength of hole threads. Finite element models (FEMs) allowing for the configuration details of the TOBs fixed connection are then developed and compared with the test results. Subsequently, the failure mechanism of hole threads and stress distribution of each component are analyzed based on FEM results. It was concluded that the ultimate strength of connection was not only concerned with the shear strength of hole threads, but also was influenced by the plastic out-of-plane deformation of tube wall. These studies lay a foundation for the establishment of suitable design methods of this type of connection.

그라우저에 의해 발생되는 궤도의 측면추진력 예측 (The Prediction of Side Thrust Generated by Grousers Under Track)

  • 박원엽;이규승;박준걸
    • Journal of Biosystems Engineering
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2000
  • This study was conducted to develop the mathmatical model for predicting the side thrust which is generated by the shearing action on the vertical surfaces of the sides of the track. Experiments were conducted with the three different shear plates with grouser length of 1, 3 and 5 cm for two different soil condition using soil bin system. The measured side thrust were compared with the values predicted by the new model developed in this study and by Bekker's model respectively. The values of side thrust predicted by the new model were more close to the measured values than those of the side thrust predicted by Bekker's model . The total thrust measured were also compared with the values predicted by the conventional model which considers only bottom thrust effect and by the new model which contains not only bottom thurst but side thrust effect. The values of the thrust predicted by conventional modelwere lower than measured values for both of the soil conditions and the three levels of grouser length. The maximum errors of conventional model were increased with the increase of grouser length. but the values of the total thrust predicted by the model developed in this study were well matched to the measured ones for both of the soil conditions and the three levels of grouser lengths.

  • PDF

편심을 가진 1/12 축소 RC 주상복합구조물의 진동대실험 (Shaking Table Tests of 1/12-Scale RC Bearing-Wall System with Bottom Piloti Stories Having Eccentric Shear-Wall)

  • 이한선;고동우;권기혁;김병현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.185-190
    • /
    • 2001
  • The severe shortage of the available sites in the highly developed downtown area in Korea necessitates the construction of high-rise buildings which meet the need of residence and commercial activity simultaneously. The objective of this study is to investigate the seismic performance of this type of building structures. For this purpose, two 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames with infilled shear wall have two different layouts of the plan : The one has symmetric plan and the other has unsymmetric plan. Then, this model was subjected to a series of earthquake excitations. The test results show that the layout of shear wall has the negligible effect on the natural period and the base shear coefficient, but great effect on the failure mode of beam-column joint at flexible side frame.

  • PDF

Non-linear thermal buckling of FG plates with porosity based on hyperbolic shear deformation theory

  • Hadji, Lazreg;Amoozgar, Mohammadreza;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.711-722
    • /
    • 2022
  • In this paper, hyperbolic shear deformation plate theory is developed for thermal buckling of functionally graded plates with porosity by dividing transverse displacement into bending and shear parts. The present theory is variationally consistent, and accounts for a quadratic variation of the transverse shearstrains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Three different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. The logarithmic-uneven porosities for first time is mentioned. Equilibrium and stability equations are derived based on the present theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, aspect ratio and side-to-thickness ratio on the buckling temperature difference of imperfect FG plates.

Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제14권1호
    • /
    • pp.85-104
    • /
    • 2013
  • The present work deals with the thermomechanical bending response of functionally graded plates resting on Winkler-Pasternak elastic foundations. Theoretical formulations are based on a recently developed refined trigonometric shear deformation theory (RTSDT). The theory accounts for trigonometric distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present refined trigonometric shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution of the volume fraction of the constituents. The elastic foundation is modelled as two-parameter Pasternak foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermomechanical behavior of functionally graded plates. It can be concluded that the proposed theory is accurate and efficient in predicting the thermomechanical bending response of functionally graded plates.