• Title/Summary/Keyword: Developed model

Search Result 26,070, Processing Time 0.043 seconds

Forecast of Influent Characteristics in Wastewater Treatment Plant with Time Series Model (시계열모델을 이용한 하수처리장 유입수 성상 예측)

  • Kim, Byung-Goon;Moon, Yong-Taik;Kim, Hong-Suck;Kim, Jong-Rack
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.701-707
    • /
    • 2007
  • The information on the incoming load to wastewater treatment plants is not often available to apply to evaluate effects of control actions on the field plant. In this study, a time series model was developed to forecast influent flow rate, BOD, COD, SS, TN and TP concentrations using field operating data. The developed time series model could predict 1 day ahead forecasting results accurately. The coefficient of determination between measured data and 1 day ahead forecasting results has a range from 0.8898 to 0.9971. So, the corelation is relatively high. We made forecasting program based on the time series model developed and hope that the program will assist the operators in the stable operation in wastewater treatment plants.

A Symbolic Computation Method for Automatic Generation of a Full Vehicle Model Simulation Code for a Driving Simulator

  • Lee Ji-Young;Lee Woon-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.395-402
    • /
    • 2005
  • This paper deals with modeling and computer simulation of a full multibody vehicle model for a driving simulator. The multibody vehicle model is based on the recursive formulation and a corresponding simulation code is generated automatically from AUTOCODE, which is a symbolic computation package developed by the authors using MAPLE. The paper describes a procedure for automatically generating a highly efficient simulation code for the full vehicle model, while incorporating realistically modeled components. The following issues have been accounted for in the procedure, including software design for representing a mechanical system in symbolic form as a set of computer data objects, a multibody formulation for systems with various types of connections between bodies, automatic manipulation of symbolic expressions in the multibody formulation, interface design for allowing users to describe unconventional force-and torque-producing components, and a method for accommodating external computer subroutines that may have already been developed. The effectiveness and efficiency of the proposed method have been demonstrated by the simulation code developed and implemented for driving simulation.

Numerical Modeling of the Mathematical Model of Single Spherical Bubble (단일 구형 기포의 수학적 모델에 대한 수치적 해석 모델)

  • Kang, Dong-Keun;Yang, Hyun-Ik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.731-738
    • /
    • 2010
  • Cavitation is described by formation and collapse of the bubbles in a liquid when the ambient pressure decreases. Formed bubbles grow and collapse by change of pressure, and when they collapse, shockwave by high pressure is generated. In general, bubble behavior can be described by Rayleigh-Plesset equation under adiabatic or isothermal condition and hence, phase shift by the pressure change in a bubble cannot be considered in the equation. In our study, a numerical model is developed from the mathematical model considering the phase shift from the previous study. In the developed numerical model, size of single spherical bubble is calculated by the change of mass calculated from the change of the ambient pressure in a liquid. The developed numerical model is verified by a case of liquid flow in a narrow channel.

Modeling and Prediction of Yarn Density Profiles Using Neural Networks (인공 신경망을 이용한 방적사 굵기 신호의 모델링)

  • Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.19 no.6
    • /
    • pp.7-11
    • /
    • 2007
  • A prediction model for yarn density profile was developed using the neural network methodology. The neural network model developed traces mass densities of a yarn within a section and predicts the mass profiles of the next yarn segment yet to be measured. The model does not require an assumption on the existence of a relationship between the past and future data sets. Four high-draft yarns made under different processing conditions were employed in order to test the performance of the model developed. It was shown that the model could predict the yarn density profiles without a significant error.

Modeling of Indium Tin Oxide(ITO) Film Deposition Process using Neural Network (신경회로망을 이용한 ITO 박막 성장 공정의 모형화)

  • Min, Chul-Hong;Park, Sung-Jin;Yoon, Neung-Goo;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.741-746
    • /
    • 2009
  • Compare to conventional Indium Tin Oxide (ITO) film deposition methods, cesium assisted sputtering method has been shown superior electrical, mechanical, and optical film properties. However, it is not easy to use cesium assisted sputtering method since ITO film properties are very sensitive to Cesium assisted equipment condition but their mechanism is not yet clearly defined physically or mathematically. Therefore, to optimize deposited ITO film characteristics, development of accurate and reliable process model is essential. For this, in this work, we developed ITO film deposition process model using neural networks and design of experiment (DOE). Developed model prediction results are compared with conventional statistical regression model and developed neural process model has been shown superior prediction results on modeling of ITO film thickness, sheet resistance, and transmittance characteristics.

Development of Inter Turn Short Fault Model of IPM Motor (IPM모터의 턴쇼트 고장모델에 관한 연구)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.305-312
    • /
    • 2015
  • In this study, inter-turn short fault models of interior permanent magnet synchronous motors (IPMSM) are developed by adding saliency modeling to surface-mounted permanent magnet motor models. The saliency model is obtained using the deformed flux models based on both fault-winding flux information and inductance variations caused by cross-flux linkages that depend on the distribution of the same phase windings. By assuming the balanced three-phase current injection, we obtain the positive and negative sequence voltages and the fault current in the positive and the negative synchronous reference frames. The output torque model is developed by adding the magnet and the reluctance torque, which are derived from the developed models. To verify the proposed IPMSM model with an inter-turn short fault, finite element method-based simulation and experimental measurement results are presented.

Development of EMTDC Model of Seo-Daegu SVC (서대구 SVC의 EMTDC 모델 개발)

  • Son, Kwang-Myoung;Kim, Dong-Hyun;Lee, Tae-Ki;Jang, Gilsoo;Yoon, Yong-Beom;Lee, Jin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.341-348
    • /
    • 2002
  • Recently, an SVC(Static Var Compensator) was installed at Seo-daegu substation in order to maintain the voltage level and reserve stability margin of the Korean Power System. This paper deals with the development of the simulation model for the Seo-daegu SVC. As a simulation platform, PSCAD/EMTDC is adopted and library components for the SVC are developed. The model includes detailed control system functions of Seo-daegu SVC. In order to verify the developed model, simulation results are compared with the TNA test performed by ABB. The results show a good agreement of the developed model with the real system.

Quantitative Analysis on the Electrical Fire Preventive Effect of Safety Inspection for Electrical Facilities for General Use (일반용 전기설비 안전점검의 전기화재 예방효과에 대한 정량적 분석)

  • Kim, Taek-Hee;Yoo, Jae-Geun;Jeon, Jeong-Chay
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • This paper presents a quantitative analysis method to quantitatively indicate a electrical fire preventive effect of safety inspection for electrical facilities for general use. Logic model was developed based on whether enforcement of safety inspection for electrical facilities, and then the developed analysis model was converted to hydraulic model by using mathematical logic. The electrical fire preventive effect of safety inspection for electrical facilities was quantitatively calculated by applying electrical safety inspection results and fire statistics for five years to the developed hydraulic model. The results show that electrical fire preventive effects of 5,542 cases on annual average for five years.

Implementation of an Operator Model with Error Mechanisms for Nuclear Power Plant Control Room Operation

  • Suh, Sang-Moon;Cheon, Se-Woo;Lee, Yong-Hee;Lee, Jung-Woon;Park, Young-Taek
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.349-354
    • /
    • 1996
  • SACOM(Simulation Analyser with Cognitive Operator Model) is being developed at Korea Atomic Energy Research Institute to simulate human operator's cognitive characteristics during the emergency situations of nuclear power plans. An operator model with error mechanisms has been developed and combined into SACOM to simulate human operator's cognitive information process based on the Rasmussen's decision ladder model. The operational logic for five different cognitive activities (Agents), operator's attentional control (Controller), short-term memory (Blackboard), and long-term memory (Knowledge Base) have been developed and implemented on blackboard architecture. A trial simulation with a scenario for emergency operation has been performed to verify the operational logic. It was found that the operator model with error mechanisms is suitable for the simulation of operator's cognitive behavior in emergency situation.

  • PDF

Development of a 3D thermohydraulic-neutronic coupling model for accident analysis in research miniature neutron source reactor (MNSR)

  • Ahmadi, M.;Rabiee, A.;Pirouzmand, A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1776-1783
    • /
    • 2019
  • To accurately analyze the accidents in nuclear reactors, a thermohydraulic-neutronic coupling calculation is required to solve fluid dynamics and nuclear reactor kinetics equations in fine cells simultaneously and evaluate the local effects of neutronic and thermohydraulic parameters on each other. In the present study, a 3D thermohydraulic-neutronic coupling model is developed, validated and then applied for Isfahan MNSR (Miniature Neutron Source reactor) safety analysis. The proposed model is developed using FLUENT software and user defined functions (UDF) are applied to simulate the neutronic behavior of MNSR. The validation of the proposed model is first evaluated using 1mk reactivity insertion experiment into Isfahan MNSR core. Then, the developed coupling code is applied for a design basis accident (DBA) scenario analysis with the insertion of maximum allowed cold core reactivity of 4 mk. The results show that the proposed model is able to predict the behavior of the reactor core under normal and accident conditions with a good accuracy.