• Title/Summary/Keyword: Develop of controller

Search Result 545, Processing Time 0.03 seconds

Design of Smart Controller for New Generation Semiconductor Wet Station (차세대 반도체 세정장비용 스마트 제어기 설계)

  • 홍광진;백승원;조현찬;김광선;김두용;조중근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.149-152
    • /
    • 2004
  • Generally the wafer is increased by 300mm. We are desired that the wafer is prevented from pollutions of metal contaminant on surface of wafer. We have to develop new wafer cleaning process of IC Manufacturing that can reduce DI water and chemical by removal of the wafer cleaning process step. Moreover, it is difficult to control temprature and density of chemical in spite of rapidly increasing automation of system. We design smart module controller for new generation of semiconductor wet station with intelligent algorithm using data that is taken by computer simulation for optimal system.

  • PDF

Engine Modeling and Validation for Control System Design of a Gaseous-fuel Engine (기체연료엔진의 제어시스템 설계를 위한 엔진 모델링 및 검증)

  • 심한섭;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.7-17
    • /
    • 2003
  • Highly accurate control of an air-fuel ratio is very important to reduce exhaust gas emissions of gaseous-fuel engines. In order to achieve this purpose, a precise engine model is required to estimate engine performance from the engine design process which is applied to the design of an engine controller. Engine dynamics are considered to develop a dynamic engine model of a gaseous-fuel engine. An effective air mass ratio is proposed to study variations of the engine dynamics according to the water vapor and the gaseous-fuel in the mixture. The dynamic engine model is validated with the LPG engine under steady and transient operating conditions. The experimental results in the LPG gaseous-fuel engine show that the estimation of the air flow and the air-fuel ratio based upon the effective air mass ratio is more accurate than that of a normal engine model.

Hydraulic System Simulation and Vehicle Dynamic Modeling for the Analysis and Development of Tire Roller Prototype (유압 구동식 타이어 로울러 Prototype의 유압 시스템 설계 및 차량 동역학적 모델링)

  • 박춘식;김준호;김상겸;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.137-137
    • /
    • 2000
  • In this research. we developed Tire Roller Prototype which is operated hydraulic transmission system. For develop the theoretically computer aided system, we practiced the simulation of hydraulic system and dynamic modeling and will compare with the experiment results of Tire Roller Prototype. We conceptualize the new hydraulic system and derive the equations of motion for dynamic analysis. Finally, we will design the controller, which can manage the hydraulic circuit of servo mechanism system. We define new hydraulic system and integrate modeling of Tire Roller through simulation of h\ulcornerdraulic system and design of controller. From above procedure. Hydraulic transmission system characteristics and target performance can be investigated. To follow the required performance, we select the parts of Tire Roller. We manufactured the prototype of Tire Roller, and will install the equipment for experiment.

  • PDF

Development of a Tying-Unit Controller for a Variable Chamber Round Baler (가변 원형 베일러의 결속 기구 제어 장치 개발)

  • 김종언;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.341-350
    • /
    • 2000
  • This study was conducted to develop a control unit for a tying device of a variable chamber round baler. The work process of the tying device was thoroughly analyzed and the control sequence was established according to the work process. Based on this control sequence, a control unit using an 8 bit microprocessor AT 89C52 as a CPU was developed. The driving circuit to control the actuator motion was developed and the PWM method was used to regulate the velocity of the actuator. On the front panel of the control unit, indicators were also installed to show the operations being conducted. A prototype of the developed control unit was manufactured and tested. A total of 50 complete cycles of the control sequence was repeated and no failure was observed. It was evaluated that the developed control unit has an excellent performance and can be used practically for variable chamber round balers.

  • PDF

Development of Real-time Simulator for Vehicle Electric Brake System (차량 전자 제동 시스템을 위한 실시간 시뮬레이터 개발)

  • Cheon, Se Young;Choi, Seong Woong;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper develops ABS braking real - time simulator to develop vehicle braking system by simulation. Recently, real-time simulation is widely used in the development of vehicles to decrease development time. In the field of electronic braking, real-time simulation is actively underway. In order to simulate electronic braking model in real time, a vehicle model, a hydraulic model, and a control S/W model are required. These models must be calculated in one platform. Therefore, in this paper, a vehicle model composed of CarSim and a hydraulic model composed of SimulationX using S/W in actual ABS controller was developed as a Simulink model base and linked with Matlab real time model. Using this real-time model, design effects of the electronic braking controller were simulated according to road surface condition to verify its operability.

Velocity Control of Permanent Magnet Synchronous Motors Using Nonlinear Sliding Manifold (영구 자석형 동기모터 속도제어를 위한 비선형 슬라이딩 매니폴드 설계)

  • Gil, Jeonghwan;Shin, Donghoon;Lee, Youngwoo;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1136-1141
    • /
    • 2015
  • In this paper, we develop a sliding mode controller that uses a nonlinear sliding manifold for the permanent magnet synchronous motor. The proposed controller makes sure that both currents and velocity tracking error converge into equilibria. Nonlinear sliding manifold consists of current dynamics and nonlinear functions which are designed with velocity tracking error and its integrated term. The nonlinear functions are designed to guarantee that velocity tracking error converge into zero. The closed-loop stability is proven by Lyapunov theory. The effectiveness of proposed method is demonstrated by numerical simulation results.

Real Time Simulator for a Permanent Magnet Synchronous Motor with Power Converter (전력변환기를 이용한 영구자석 동기전동기용 실시간 시뮬레이터)

  • Oh, Hyun-Cheal;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.114-124
    • /
    • 2013
  • Recently, the real time simulator to develop the inverter drive board and motor control algorithm for high power induction motor and PM synchronous motor is required. In this paper, the real time simulator based on the voltage control for a PM synchronous motor is proposed. The resistor, inductor, and the induced voltage for the modeling of a PM synchronous motor is implemented by the power converter including the LCL filter and the PWM rectifier. The induced voltage of a PM synchronous motor is simulated by the capacitor voltage of the LCL filter, which is controlled by PI voltage controller and the deadbeat current controller. The operation and the simulated characteristics of the proposed real time simulator for a PM synchronous motor is verified by the simulation.

A Study on Driving Control using Neural Network Identifier (신경회로망 동정기를 이용한 AGV의 주행제어에 관한 연구)

  • 이영진;이진우;손주한;최성욱;김한근;조현철;이권순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.151-151
    • /
    • 2000
  • The objective of this paper is to develop the new robust and adaptive control system against external environments as applying the probabilistic recognition which is one of the inherent properties of immune system, ability of learning and memorization, and regulation theory of immune network to the system under engineering point of view. In this paper, HIA(Humoral Immune Algorithm) PID controller using Neural Network Identifier was proposed to drive the autonomous guided vehicle(AGV) more effectively. To verify the performance of the proposed HIA PID controller, some experiments for the control of steering and speed of that AGV are performed.

  • PDF

A Development of Active Controller for the Vibration of Tall Civil St (고층 빌딩의 진동에 대한 능동제어기의 개발)

  • Lee, Y.J.;Chang, Y.H.;Song, B.M.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.689-692
    • /
    • 1997
  • This paper is attempt to develop an active controller for the vibration of tall civil structures due to earthquake-induced ground acceleration. Various active control methods are applied to an 8 story base isolated system(BIS) with a fumed mass damper(TMD) at the base of the building. The results are also investigated.

  • PDF

$H_{\infty}$ Fuzzy State-Feedback Control Design for Uncertain Nonlinear Descriptor Systems;An LMI Approach

  • Assawinchaichote, W.;Nguang, S.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1037-1041
    • /
    • 2004
  • This paper examines the problem of designing an $H_{\infty}$ fuzzy state-feedback controller for a class of uncertain nonlinear descriptor systems which is described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, we develop an $H_{\infty}$ state-feedback controller which guarantees the $L_2$-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value for this class of systems. A numerical example is provided to illustrate the design developed in this paper.

  • PDF