• Title/Summary/Keyword: Detorque value

Search Result 19, Processing Time 0.028 seconds

THE EFFECT OF INTERNAL IMPLANT-ABUTMENT CONNECTION AND DIAMETER ON SCREW LOOSENING

  • Ha, Chun-Yeo;Kim, Chang-Whe;Lim, Young-Jun;Jang, Kyung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.379-392
    • /
    • 2005
  • Statement of problem. One of the common problems of dental implant prosthesis is the loosening of the screw that connects each component, and this problem is more common in single implant-supported prostheses with external connection, and in molars. Purpose. The purposes of this study were: (1) to compare the initial abutment screw detorque values of the six different implant-abutment interface designs, (2) to compare the detorque values of the six different implant-abutment interface designs after cyclic loading, (3) to compare the detorque values of regular and wide diameter implants and (4) to compare the initial detorque values with the detorque values after cyclic loading. Material and methods. Six different implant-abutment connection systems were used. The cement retained abutment and titanium screw of each system were assembled and tightened to 32Ncm with digital torque gauge. After 10 minutes, initial detorque values were measured. The custom titanium crown were cemented temporarily and a cyclic sine curve load(20 to 320N, 14Hz) was applied. The detorque values were measured after cyclic loading of one million times by loading machine. One-way ANOVA test, scheffe’s test and Mann-Whitney U test were used. Results. The results were as follows : 1. The initial detorque values of six different implant-abutment connections were not significantly different(p>0.05). 2. The detorque values after one million dynamic cyclic loading were significantly different (p<0.05). 3. The SS-II regular and wide implant both recorded the higher detorque values than other groups after cyclic loading(p<0.05). 4. Of the wide implants, the initial detorque values of Avana Self Tapping Implant, MIS and Tapered Screw Vent, and the detorque values of MIS implant after cyclic loading were higher than their regular counterparts(p<0.05). 5. After cyclic loading, SS-II regular and wide implants showed higher detorque values than before(p<0.05).

THE EFFECT OF SCREW TIGHTENING SEQUENCE AND TIGHTENING METHOD ON THE DETORQUE VALUE IN IMPLANT-SUPPORTED SUPERSTRUCTURE (임플랜트 지지 상부구조물에서 나사조임순서와 조임방법이 풀림토크값에 미치는 영향)

  • Choi, Jung-Han;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo;Lee, Seok-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.653-664
    • /
    • 2007
  • Statement of problem: The screw detorque value is a measure of the preload remaining in the screw just before detorquing. Purpose: This study evaluated the effect of different screw tightening sequences and tightening methods on detorque values for a well-fitting implant superstructure. Material and method: An implant superstructure that connected directly to four implants (Astra Tech) was fabricated on a fully edentulous mandibular acrylic resin model. Six well-fitting dental stone casts were made with a pickup impression of the superstructure from the acrylic resin model. To evaluate the effect of three screw tightening sequences (1-2-3-4, 2-4-3-1, and 2-3-1-4) and two tightening methods (2-step and 1-step) on the stability of screw joint, the detorque values for a well-fitting implant superstructure were measured twice after screw tightening using 20 Ncm. Detorque values were analyzed using multi-way analysis of variance and two-way analysis of variance at a .05 level of significance. Results: 1. The mean detorque values for three screw tightening sequences were 12.3 Ncm, 12.6 Ncm, and 12.0 Ncm, respectively. 2. The mean detorque values for two screw tightening methods were 12.0 Ncm, and 12.2 Ncm, respectively. 3. The mean of mimimum detorque values for three screw tightening sequences and for two tightening methods were 10.6 Ncm, 11.1 Ncm, 10.5 Ncm, and 9.8 Ncm, respectively. 4. No statistically significant differences among the variables of screw tightening sequence and tightening method were found (p>.05) for detorque values and for mimimum detorque values. Conclusion: Within the limitations of this study, the screw tightening sequence and tightening method did not have a significant effect on the detorque values for a well-fitting implant superstructure.

A STUDY OF SCREW LOOSENING AFTER DYNAMIC CONTINOUS FATIGUE TEST OF SEVERAL ABUTMENT SCREW (수종 임플랜트 지대주나사의 반복하중 후 나사풀림에 관한 연구)

  • Kim Jin-Man;Han Jung-Suk;Lee Sun-Hyung;Yang Jae-Ho;Lee Jae-Bong;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.519-531
    • /
    • 2003
  • Statement of problem : Chronic implant screw loosening remains a problem in restorative practices. Some implant manufactureres have introduced abutment screws with treated material, surfaces and macrostructures in an effort to reduce potential loosening. Purpose : This study evaluated the materials and loading cycles on detorque value after dynamic continous fatigue test in the sinulated conditions of posterior single restoration. Material and method : Fourteen of each of the following abutment screws - titanium alloy, gold alloy, gold-tite, and titanium alloy modified - were used in test. SEM is used to verify macrostructures of each screws. $ZrO_2/Al_2O_3$ composite abutment was tightened on $4{\times}10.0mm$ titanium external implant at 30 Ncm. Cyclic loading machine delivered dynamic loading forces between 20 and 320N for 100,000, 200,000, 300,000, 500,000, and 1,000,000 cycles at frequencies 14Hz. Torque and detorque value after loading was measured. Results : All measued screws had different screw length and thread form. Titanium modified screw had greater detorque value than others before and after cyclic loadings(p<0.05). All abutment screws had no significant change in mean percentage of detorque value after loading to initial value after less than 500.000 cyclic loadings, but significant lower value after 1,000,000 cycles(p<0.05). Conclusion : Within limintations of this study all abutment screws may be loosend after about 1 year use. Annual check-up is nessasary to prevent screw loosening.

THE EFFECT OF ABUTMENT HEIGHT ON SCREW LOOSENING IN SINGLE IMPLANT-SUPPORTED PROSTHESES AFTER DYNAMIC CYCLIC LOADING

  • Kim Nam-Gun;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.664-670
    • /
    • 2004
  • Statement of problem. One of the common problems of dental implant prosthesis is the loosening of the screw that connects each component, and this problem is more common in single implant-supported prostheses with external connection. Purpose. The purpose of this study was to examine the changes of detorque values of abutment screws with external connection in different abutment heights. Materials and methods. After cyclic loading on three different abutment heights, detorque values were measured. Abutments were retained with titanium abutment screws tightened to 30 Ncm (30.5 kgmm) with digital torque gauge as recommended by the manufacturer. Replacing abutments, implants and titanium abutment screws with new ones at every measurement, initial detorque values were measured six times. In measuring de torque values after cyclic loading, Avana Cemented Abutments of 4.0 mm collar, 7.0 mm height (Osstem Co., Ltd., Seoul, Korea) were used with three different lengths of 5.0, 8.0, 11.0 mm. Shorter abutments were made by milling of 11.0 mm abutment to have the same force-exercised area of 4.5 mm diameter. Sine curve force (20N-320N, 14Hz) was applied, and detorque values were measured after cyclic loading of 2 million times by loading machine. Detorque values of initial and after-loading were measured by digital torque gauge. One-way ANOVA was employed to see if there was any influence from different abutment heights. Results. The results were as follows: 1. The initial detorque value was 27.8$\pm$0.93 kgmm, and the ratio of the initial detorque value to the tightening torque was 0.91(27.8/30.5). 2. Measured detorque values after cyclic loading were declined as the height of the abutment increased, that was, 5.0 mm; 22.3$\pm$0.82 kgmm, 8.0 mm; 21.8$\pm$0.93 kgmm, and 11.0 mm; 21.3$\pm$0.94 kgmm. 3. One-way ANOVA showed no statistically significant differences among these (p>0.05). 4. Noticeable mobility at the implant-abutment interface was not observed in any case after cyclic loading at all.

The effect of screw tightening techniques on the detorque value in internal connection implant superstructure (내부연결 임플란트 상부구조물에서 나사조임술식이 풀림토크값에 미치는 영향)

  • Choi, Jung-Han
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.243-250
    • /
    • 2010
  • Purpose: This study evaluated the effect of different screw tightening sequences and methods on detorque values in a well-fitting implant superstructure. Materials and methods: A fully edentulous mandibular master model and a metal framework directly connected to four parallel implants (Astra Tech) with a passive fit to each other were fabricated. Six stone casts were made with a splinted impression technique to represent a 'well-fitting' situation with the metal framework. Detorque values were measured twice after screw tightening using 20 Ncm. Detorque values and minimum detorque values for three screw tightening sequences (1-2-3-4, 2-4-3-1, and 2-3-1-4) and for two tightening methods (two-step and one-step) were analyzed using multi-way analysis of variance and two-way analysis of variance, respectively, at a .05 level of significance. Results: The mean detorque values for screw tightening sequences ranged from 12.8 Ncm (2-4-3-1) to 13.1 Ncm (2-3-1-4), and for screw tightening methods were 13.1 Ncm (two-step) and 11.8 Ncm (one-step). The mean of mimimum detorque values for screw tightening sequences were 11.1 Ncm (1-2-3-4) and 11.2 Ncm (2-4-3-1 and 2-3-1-4), and for screw tightening methods were 11.2 Ncm (two-step) and 9.9 Ncm (one-step). No statistically significant differences among three screw tightening sequences were found for detorque values and for mimimum detorque values. But, statistically significant differences between two screw tightening methods were found for two values. Two-step screw tightening method showed higher detorque value (P = .0003) and higher minimum detorque value (P = .0035) than one-step method. Conclusion: Within the limitations of this study, the screw tightening sequence was not a critical factor for the detorque values in a well-fitting implant superstructure by the splinted impression technique. But, two-step screw tightening method showed greater detorque values than one-step method.

EFFECT OF CASTING PROCEDURE ON SCREW LOOSENING OF UCLA ABUTMENT IN TWO IMPLANT-ABUTMENT CONNECTION SYSTEMS

  • Ha, Chun-Yeo;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.246-254
    • /
    • 2008
  • STATEMENT OF PROBLEM: The cast abutment has advantages of overcoming angulation problem and esthetic problem. However, when a gold-machined UCLA abutment undergoes casting, the abutment surfaces in contact with the implant may change. PURPOSE: The purpose of this study was to compare the detorque values of prefabricated machined abutments with gold-premachined cast-on UCLA abutments before and after casting in two types of internal implant-abutment connection systems: (1) internal hexagonal joint, (2) internal octagonal joint. Furthermore, the detorque values of two implant-abutment connection systems were compared. MATERIALS AND METHODS: Twenty internal hexagonal implants with an 11-degree taper and twenty internal octagonal implants with an 8-degree taper were acquired. Ten prefabricated titanium abutments and ten gold-premachined UCLA abutments were used for each systems. Each abutment was torqued to 30 N㎝ according to the manufacturer's instructions and detorque value was recorded. The detorque values were measured once more, after casting with gold alloy for UCLA abutment, and preparation for titanium abutments. Group means were calculated and compared using independent t-test and paired t-test (${\alpha}$=0.05). RESULTS: The results were as follows: 1. The detorque values between titanium abutments and UCLA-type abutments showed significant differences in internal octagonal implants (P<0.05), not in internal hexagonal implants (P>0.05). 2. In comparison of internal hexagonal and octagonal implants, the detorque values of titanium abutments had significant differences between two connection systems on the initial analysis (P<0.05), not on the second analysis (P>0.05) and the detorque values of UCLA-type abutments were not significantly different between two connection systems (P>0.05). 3. The detorque values of titanium abutments and UCLA-type abutments decreased significantly on the second analysis than the initial analysis in internal hexagonal implants (P<0.05), not in internal octagonal implants (P>0.05). CONCLUSION: Casting procedures of UCLA-type abutments had no significant effect on screw loosening in internal implant-abutment connection systems, and UCLA-type abutments showed higher detorque values than titanium abutments in internal octagonal implants.

Influence of Implant Abutment Systems on Detorque Value and Screw Joint Stability (임플랜트 지대주 종류가 나사풀림력과 연결부의 안정성에 미치는 영향)

  • Bae, Byung-Ryong;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.97-109
    • /
    • 2010
  • Purpose : This study was designed to evaluate the influence of implant abutment materials on detorque value and screw joint stability before and after dynamic fatigue test. Materials & Methods : The external hexagonal fixture and three different groups of abutment (titanium abutments, zirconia abutments, and UCLA abutments) were used. The detorque value before loading and after loading (cyclic loading up to $10^5$ cycles) of the abutment screw were measured. Result : 1. There was no significant difference in detorque value before loading among the each group. 2. There was no significant difference in detorque value after loading among the each group. 3. Detorque values before and after cyclic loading in each group were not significantly different. 4. There was no significant difference in loss percentage of removal torque before loading among the each group. 5. There was no significant difference in loss percentage of removal torque after loading among the each group. 6. There was no significant difference in loss percentage of removal torque according to loading among the each group. Conclusion : Short term screw loosening of three types of abutment was not significantly different. When bite force was applied, there was no significant difference in screw loosening between before loading and after loading.

A comparative study of gold UCLA-type and CAD/CAM titanium implant abutments

  • Park, Ji-Man;Lee, Jai-Bong;Heo, Seong-Joo;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.46-52
    • /
    • 2014
  • PURPOSE. The aim of this study was to evaluate the interface accuracy of computer-assisted designed and manufactured (CAD/CAM) titanium abutments and implant fixture compared to gold-cast UCLA abutments. MATERIALS AND METHODS. An external connection implant system (Mark III, n=10) and an internal connection implant system (Replace Select, n=10) were used, 5 of each group were connected to milled titanium abutment and the rest were connected to the gold-cast UCLA abutments. The implant fixture and abutment were tightened to torque of 35 Ncm using a digital torque gauge, and initial detorque values were measured 10 minutes after tightening. To mimic the mastication, a cyclic loading was applied at 14 Hz for one million cycles, with the stress amplitude range being within 0 N to 100 N. After the cyclic loading, detorque values were measured again. The fixture-abutment gaps were measured under a microscope and recorded with an accuracy of ${\pm}0.1{\mu}m$ at 50 points. RESULTS. Initial detorque values of milled abutment were significantly higher than those of cast abutment (P<.05). Detorque values after one million dynamic cyclic loadings were not significantly different (P>.05). After cyclic loading, detorque values of cast abutment increased, but those of milled abutment decreased (P<.05). There was no significant difference of gap dimension between the milled abutment group and the cast abutment group after cyclic loading. CONCLUSION. In conclusion, CAD/CAM milled titanium abutment can be fabricated with sufficient accuracy to permit screw joint stability between abutment and fixture comparable to that of the traditional gold cast UCLA abutment.

Detorque Values of Various Compatible Dental Implant Screws (호환 가능한 수종의 치과용 임플란트 나사의 풀림토크값에 대한 연구)

  • Lee, Ju-Ri;Lee, Dong-Hwan;Hwang, Jae-Woong;Choi, Jung-Han
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.273-283
    • /
    • 2010
  • This study evaluated the effect of 3 different compatible screws on the detorque values in a multiple implant-supported superstructure and single implant abutments. An implant superstructure directly connected to 4 implants was screwed to 6 experimental dental stone casts made by acrylic resin splinted impressions, using 20 Ncm. The detorque values of screws were measured twice. Three compatible abutment screws used in this study were TorqTite screw, Gold-Tite screw, and, Titanium screw. And, using single implant abutments (GoldAdapt Engaging abutments), the detorque values of 3 different screws were measured twice on 2 implants of 5 experimental casts. According to statistical analysis of detorque values using mixed model at a .05 level of significance, no statistically significant differences among 3 different compatible screws were found in a multiple implant-supported superstructure (p>0.05). But, in single implant abutments, statistically significant differences among 3 different compatible screws were found (p=0.0175). The detorque values of TorqTite(p=0.0462) and Titanium(p=0.0348) screws were significantly higher than those of Gold-Tite screw, but no statisticantly significantlydifferences were found between TorqTite and Titanium screws(p>0.05). Therefore, various compatible screws showed significant effects on the detorque values for single implant abutment, but, showed no significant effects for a multiple implant-supported superstructure.

Comparative study of abutment screw loosening with or without adhesive material

  • Arshad, Mahnaz;Shirani, Gholamreza;Refoua, Sina;Yeganeh, Mohammadreza Rahimi
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.99-103
    • /
    • 2017
  • PURPOSE. The purpose of this study was to achieve more retention and stability and to delay or prevent screw loosening. MATERIALS AND METHODS. Twenty implants (Implantium 3.4 mm, Dentium, Seoul, Korea) were divided into 2 groups (n = 20). In the first group, an adhesive material was applied around the screw of the abutments (test group). In the second group, the screws are soaked in saliva (control group). All the screws were torqued under 30 N/cm, Then, the samples were gone through a cyclic fatigue loading process. After cyclic loading, we detorqued screws and calculated detorque value. RESULTS. In comparison with the control group, all the implant screws in the test group were smeared with the adhesive material, showing significant higher detorque value. CONCLUSION. There are significantly higher detorque values in the group with adhesive. It is recommended to make biocompatible adhesive to reduce screw loosening.