• Title/Summary/Keyword: Detonation Stability

Search Result 22, Processing Time 0.013 seconds

Deaggregation and Ultradispersion of Detonation Nanodiamonds in Polar Solvent Using Physicochemical Treatments (물리화학적 처리를 통한 극성 용매 내 나노다이아몬드의 탈응집 및 분산성 향상 연구)

  • Kim, Changkyu;Lee, Gyoung-Ja;Rhee, Changkyu
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.479-486
    • /
    • 2013
  • In the present work, physicochemical treatments were introduced for de-aggregation and stable dispersion of detonation nanodiamonds (DND) in polar solvents. The DNDs in water exhibited a particle size of 138 nm and high dispersion stability without particular treatment. However, the DNDs in ethanol were severely aggregated to several micrometers in size and showed poor dispersion stability with time. To break down aggregates of DNDs and enhance the dispersion stability of them in ethanol, mechanical force and chemical surfactant were introduced as functions of zirconia ball size, kind of surfactant and amount of surfactant added. From the analyses of average particle size and Turbiscan results, it was suggested that the size of DNDs in ethanol can be reduced by only mechanical force; however, the DNDs were re-aggregated due to high surface activity. The long-term dispersion stability can be achieved by applying mechanical force to break down the aggregates of DNDs and by preventing re-aggregation of them using proper surfactant.

A Numerical Study on Flame Stability with Extended Combustor in Superdetonative Mode Ram Accelerator (초폭굉 모드 램 가속기의 연소실 길이에 따른 화염유지특성에 대한 수치적 연구)

  • Sung, Kun-Min;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.31-38
    • /
    • 2007
  • An numerical study was conducted on superdetonative mode ram accelerator with length extended combustor. The computation condition was based on ISL's RAMAC30 II S225 experiment. For 50% length increased combustor, flame is not sustained. For the case of 60% and 70% increase, flame is successfully sustaind. But detonation wave is oscillating and acceleration is fluctuating. Extention of combustor is helpful for sustaing detonation wave but it may cause unstart.

  • PDF

A Numerical Study on Flame Stability with Extended Combustor in Superdetonative Mode Ram Accelerator (초폭굉 모드 램 가속기의 연소실 길이에 따른 화염유지특성에 대한 수치적 연구)

  • Sung, Kun-Min;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.126-129
    • /
    • 2007
  • An numerical study was conducted on superdetonative mode ram accelerator with extended combustor. The computation case was based on ISL's RAMAC30 II experiment. For 50% length increased combustor, flame is not sustained. For the case of 60% and 70% increase, flame is successfully sustaind. But detonation wave is oscillating and acceleration is fluctuating. Increasing of combustor length is helpful for sustaing detonation wave but it may cause unstart.

  • PDF

Comparative Analyses of Commercial Detonation Nanodiamonds

  • Puzyr, A.P.;Burova, A.E.;Bondar, V.S.;Rhee, C.K.;Rhee, W.H.;Hwang, K.C.
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.297-302
    • /
    • 2011
  • Colloidal stability is one of crucial factors for many applications of nanodiamond. Despite recent development, nanodiamonds available on the market often exhibit a high impurity content, wide size distribution of aggregates and low resistance to sedimentation. In the current study, four commercial nanodiamond powders synthesized by detonation synthesis were surface modified and then separated with respect to the size into six fractions by centrifugation. The fractions were evaluated by zeta potential, particle size distribution and elemental composition. The results showed that the modified nanodiamonds form stable colloidal suspensions without sedimentation for a long time.

Numerical Analysis of Detonation Wave Propagation Characteristics in Annular Channels (환형 관내의 데토네이션 파 전파 특성 해석)

  • Lee, Su-Han;Cho, Deok-Rae;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.66-73
    • /
    • 2008
  • Present study examines the detonation wave propagation characteristics in annular channels. Numerical approaches used in the previous studies were extended with marching windows technique. Parametric study has been carried out using a radius of curvature normalized by the channel width considered as unique geometric parameter. In the channels of small radius of curvature, detonation wave is unstable and the regular cell structure is not observed. There is a critical radius of curvature where cell structure can be sustained. The effect of curvature makes the pressure difference on inner and outer surfaces where the detonation wave is overdriven. The results converge to that of straight channel as the radius of curvature gets larger, as expected.

Numerical investigation of the impact of geological discontinuities on the propagation of ground vibrations

  • Haghnejad, Ali;Ahangari, Kaveh;Moarefvand, Parviz;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.545-552
    • /
    • 2018
  • Blast-induced ground vibrations by a significant amount of explosives may cause many problems for mining slope stability. Geological discontinuities have a significant influence on the transmission of dynamic pressure of detonation and according to their position relative to the slope face may have damaging or useful impacts on the slope stability. In this study, the effect of geological discontinuities was investigated by modelling a slope with geological discontinuities through applying the dynamic pressure in three-dimensional discrete element code (3DEC). The geological discontinuities in four states that generally apperceived in mine slopes are considered. Given the advantages of the pressure decay function defined by some researcher, this type of function was used to develop the pressure-time profile. The peak particle velocities (PPV) values were monitored along an axis by utilization of Fish programming language and the results were used as an indicator to measure the effects. As shown in the discontinuity-free model, PPV empirical models are reliable in rocks lacking discontinuities or tightly jointed rock masses. According to the other results, the empirical models cannot be used for the case where the rock mass contains discontinuities with any direction or dip. With regard to PPVs, when the direction of discontinuities is opposite to that of the slope face, the dynamic pressure of detonation is significantly damped toward the slope direction at the surface of discontinuities. On the other hand, when the discontinuities are horizontal, the dynamic pressure of detonation affects the rock mass to a large distance.

DFT Studies on Two Novel Explosives Based on the Guanidine-Fused Bicyclic Structure

  • Jin, Xing-Hui;Hu, Bing-Cheng;Jia, Huan-Qing;Liu, Zu-Liang;Lu, Chun-Xu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1043-1049
    • /
    • 2014
  • Density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) theoretical level were performed for two novel explosives (compounds B and C) based on the guanidine-fused bicyclic skeleton $C_4N_6H_8$ (A). The heats of formation (HOFs) were calculated via isodesmic reaction. The detonation properties were evaluated by using the Kamlet-Jacobs equations. The bond dissociation energies (BDEs) for the thermolysis initiation bond were also analyzed to investigate the thermal stability. The results show that the compounds have high positive HOF values (B, 1064.68 $kJ{\cdot}mol^{-1}$; C, 724.02 $kJ{\cdot}mol^{-1}$), high detonation properties (${\rho}$, D and P values of 2.04 $g{\cdot}cm^{-3}$ and 2.21 $g{\cdot}cm^{-3}$, 9.98 $km{\cdot}s^{-1}$ and 10.99 $km{\cdot}s^{-1}$, 46.44 GPa and 59.91 Gpa, respectively) and meet the basic stability requirement. Additionally, feasible synthetic routes of the these high energy density compounds (HEDCs) were also proposed via retrosynthetic analysis.

Theoretical Study on the High Energetic Properties of HMX/LLM-116 Cocrystals (HMX/LLM-116 공결정의 고에너지 특성에 관한 이론 연구)

  • Kim, Sung-Hyun;Ko, Yoo-Mi;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The theoretical investigation has been performed to predict detonation velocity, detonation pressure, and thermodynamic stability of HMX/LLM-116 cocrystal. All possible geometries of HMX, LLM-116, and cocrystal have been optimized at the B3LYP/cc-pVTZ level of theory. The binding energy for the trigger bond and cluster has been calculated to predict the thermodynamic stability. The MP2 binding energies were obtained using single point energy calculation at the B3LYP optimized geometries, and the density has been calculated from monte carlo integration. The detonation velocity and detonation pressure have been calculated using Kamlet-Jacobs equation, while enthalpy has been predicted at the CBS-Q level of theory.

Theoretical Studies on Nitramine Explosives with -NH2 and -F Groups

  • Zhao, Guo Zheng;Lu, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1913-1918
    • /
    • 2012
  • The nitramine explosives with $-NH_2$ and -F groups were optimized to obtain their molecular geometries and electronic structures at DFT-B3LYP/6-31+G(d) level. The theoretical molecular density (${\rho}$), heat of formation (HOF), detonation velocity ($D$) and detonation pressure ($P$), estimated using Kamlet-Jacobs equations, showed that the detonation properties of these compounds were excellent. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties were evaluated, which were respectively related with the temperature. The simulation results reveal that 1,3,5,7-tetranitro-1,3,5,7-tetrazocan-2-amine (molecule B1) performs similarly to the famous explosive HMX, and 2-fluoro-1,3,5-trinitro-1,3,5-triazinane (molecule C1) and 2-fluoro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (molecule D1) outperform HMX. According to the quantitative standard of energetics and stability as an HEDC (high energy density compound), molecules C1 and D1 essentially satisfy this requirement. These results provide basic information for molecular design of novel high energetic density compounds.

Theoretical Investigation on the Structure, Detonation Performance and Pyrolysis Mechanism of 4,6,8-Trinitro-4,5,7,8-tetrahydro -6H-furazano[3,4-f]-1,3,5-triazepine

  • Li, Xiao-Hong;Zhang, Rui-Zhou;Zhang, Xian-Zhou
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1479-1484
    • /
    • 2014
  • Based on the full optimized molecular geometric structures at B3LYP/cc-pvtz method, a new designed compound, 4,6,8-trinitro-4,5,7,8-tetrahydro-6H-furazano[3,4-f ]-1,3,5-triazepine was investigated in order to look for high energy density compounds (HEDCs). The analysis of the molecular structure indicates that the seven-membered ring adopts chair conformation and there exist intramolecular hydrogen bond interactions. IR spectrum and heat of formation (HOF) were predicted. The detonation velocity and pressure were evaluated by using Kamlet-Jacobs equations based on the theoretical density and condensed HOF. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound. The results show that $N_1-N_6$ bond is the trigger bond. The crystal structure obtained by molecular mechanics belongs to $Pna2_1$ space group, with lattice parameters Z = 4, a = 15.3023 ${\AA}$, b = 5.7882 ${\AA}$, c = 11.0471 ${\AA}$, ${\rho}=2.06gcm^{-3}$. In addition, the analysis of frontier molecular orbital shows the title compound has good stability and high chemical hardness.