Browse > Article
http://dx.doi.org/10.4150/KPMI.2013.20.6.479

Deaggregation and Ultradispersion of Detonation Nanodiamonds in Polar Solvent Using Physicochemical Treatments  

Kim, Changkyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Lee, Gyoung-Ja (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Rhee, Changkyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
Publication Information
Journal of Powder Materials / v.20, no.6, 2013 , pp. 479-486 More about this Journal
Abstract
In the present work, physicochemical treatments were introduced for de-aggregation and stable dispersion of detonation nanodiamonds (DND) in polar solvents. The DNDs in water exhibited a particle size of 138 nm and high dispersion stability without particular treatment. However, the DNDs in ethanol were severely aggregated to several micrometers in size and showed poor dispersion stability with time. To break down aggregates of DNDs and enhance the dispersion stability of them in ethanol, mechanical force and chemical surfactant were introduced as functions of zirconia ball size, kind of surfactant and amount of surfactant added. From the analyses of average particle size and Turbiscan results, it was suggested that the size of DNDs in ethanol can be reduced by only mechanical force; however, the DNDs were re-aggregated due to high surface activity. The long-term dispersion stability can be achieved by applying mechanical force to break down the aggregates of DNDs and by preventing re-aggregation of them using proper surfactant.
Keywords
Detonation nanodiamond; Dispersion stability; Surfactant; Shaker; De-aggregation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Xu, J. Zhao, K. Xu and Q. Xue: Tribology Trans., 40 (1997) 178.   DOI   ScienceOn
2 I. Petrov, P. Detkov, A. Drovosekov, M. V. Ivanov, T. Tyler, O. Shenderova, N. P. Voznecova, Y. P. Toporov and D. Schulz: Diam. Relat. Mater., 15 (2006) 2035.   DOI   ScienceOn
3 C. Wang, B. Zheng, W. T. Zheng and Q. Jiang: Diam. Relat. Mater., 17 (2008) 204.   DOI   ScienceOn
4 A. Krueger: Chem. Eur. J., 14 (2008) 1382.   DOI   ScienceOn
5 V. S. Bondar and A. P. Puzyr: Phys. Solid State, 46 (2004) 698.
6 K. V. Purtov, A. I. Petunin, A. E. Burov, A. P. Puzyr and V. S. Bondar: Nanoscale Res. Lett., 5 (2010) 631.   DOI   ScienceOn
7 V. L. Kuznetsov, M. N. Aleksandrov, I. V. Zagoruiko, A. L. Chuvilin, E. M. Moroz, V. N. Kolomiichuk, V. A. Likholobov and P. M. Brylyakov: Carbon, 29 (1990) 665.
8 V. Y. Dolmatov: Russ. Chem. Rev., 70 (2001) 607.   DOI   ScienceOn
9 X. Xu, Z. Yu, Y. Zhu and B. Wang: J. Solid State Chem., 178 (2005) 688.   DOI   ScienceOn
10 A. Krueger and T. Boedeker: Diam. Relat. Mater., 17 (2008) 1367.   DOI   ScienceOn
11 A. Pentecost, S. Gour, V. Mochalin, I. Knoke and Y. Gogotsi: Appl. Mater. Interfaces, 2 (2010) 3289.   DOI   ScienceOn
12 G. A. Chiganova, V. A. Boonger and A. S. Chiganov: Colloid J., 55 (1993) 774.
13 L. V. Agibalova, A. P. Voznyakovskii and V. Y. Dolmatov: Superhard Mater., 4 (1998) 87.
14 A. P. Voznyakovskii, T. Gujimura and V. Y. Dolmatov: Superhard Mater., 6 (2002) 22.
15 K. Xu and Q. Xue: Phys. Solid State, 46 (2004) 633.
16 J. P. Boudou, P. A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel and E. Gaffet: Nanotechnology, 20 (2009) 235602.   DOI   ScienceOn
17 G. J. Lee, C. K. Kim, Y. Bae and C.K. Rhee: J. Nanosci. Nanotechnol., 12 (2012) 5995.   DOI
18 O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre: Colloids and Surfaces, 152 (1999) 111.   DOI   ScienceOn
19 M. J. Mankosa, G. T. Adel and R. H. Yoon: Powder Tech., 49 (1986) 75.   DOI   ScienceOn
20 D. Lee, B. Kim, G. Lee and G. Ha: J. Kor. Powder. Met. Inst., 3 (1996) 159 (Korean).
21 H. Shin, S. Lee, H. S. Jung and J. Kim: Ceram. Int., 39 (2013) 8963.   DOI   ScienceOn
22 R. Pool and P. G. Bolhuis: Phys. Chem. Chem. Phys., 12 (2010) 14789.   DOI   ScienceOn