• 제목/요약/키워드: Deterioration model

검색결과 669건 처리시간 0.028초

농촌주택 개량을 위한 노후화 진단 방안 (Development of the Evaluation Techniques of the Deterioration for the Rural House)

  • 정남수;이정재;김한중;윤성수;박미정
    • 한국농공학회지
    • /
    • 제43권1호
    • /
    • pp.106-115
    • /
    • 2001
  • This study attempted to make evaluation model of deterioration for the rural house. defined the deterioration of rural house as the two categories. First is the physical deterioration which is affected by physical faults and the second is the social deterioration which is affected by change of environments. As a results, physical deterioration model was developed by types of rural house, and social deterioration model was considered to reverse function of satisfaction of a resident.

  • PDF

Concrete bridge deck deterioration model using belief networks

  • Njardardottir, Hrodny;McCabe, Brenda;Thomas, Michael D.A.
    • Computers and Concrete
    • /
    • 제2권6호
    • /
    • pp.439-454
    • /
    • 2005
  • When deterioration of concrete is observed in a structure, it is highly desirable to determine the cause of such deterioration. Only by understanding the cause can an appropriate repair strategy be implemented to address both the cause and the symptom. In colder climates, bridge deck deterioration is often caused by chlorides from de-icing salts, which penetrate the concrete and depassivate the embedded reinforcement, causing corrosion. Bridge decks can also suffer from other deterioration mechanisms, such as alkali-silica reaction, freeze-thaw, and shrinkage. There is a need for a comprehensive and integrative system to help with the inspection and evaluation of concrete bridge deck deterioration before decisions are made on the best way to repair it. The purpose of this research was to develop a model to help with the diagnosis of concrete bridge deck deterioration that integrates the symptoms observed during an inspection, various deterioration mechanisms, and the probability of their occurrence given the available data. The model displays the diagnosis result as the probability that one of four deterioration mechanisms, namely shrinkage, corrosion of reinforcement, freeze-thaw and alkali-silica reaction, is at fault. Sensitivity analysis was performed to determine which probabilities in the model require refinement. Two case studies are included in this investigation.

도로자산관리를 위한 포장종합평가지수의 속성과 변화과정의 모델링 (Internal Property and Stochastic Deterioration Modeling of Total Pavement Condition Index for Transportation Asset Management)

  • 한대석;도명식;김부일
    • 한국도로학회논문집
    • /
    • 제19권5호
    • /
    • pp.1-11
    • /
    • 2017
  • PURPOSES : This study is aimed at development of a stochastic pavement deterioration forecasting model using National Highway Pavement Condition Index (NHPCI) to support infrastructure asset management. Using this model, the deterioration process regarding life expectancy, deterioration speed change, and reliability were estimated. METHODS : Eight years of Long-Term Pavement Performance (LTPP) data fused with traffic loads (Equivalent Single Axle Loads; ESAL) and structural capacity (Structural Number of Pavement; SNP) were used for the deterioration modeling. As an ideal stochastic model for asset management, Bayesian Markov multi-state exponential hazard model was introduced. RESULTS:The interval of NHPCI was empirically distributed from 8 to 2, and the estimation functions of individual condition indices (crack, rutting, and IRI) in conjunction with the NHPCI index were suggested. The derived deterioration curve shows that life expectancies for the preventive maintenance level was 8.34 years. The general life expectancy was 12.77 years and located in the statistical interval of 11.10-15.58 years at a 95.5% reliability level. CONCLUSIONS : This study originates and contributes to suggesting a simple way to develop a pavement deterioration model using the total condition index that considers road user satisfaction. A definition for level of service system and the corresponding life expectancies are useful for building long-term maintenance plan, especially in Life Cycle Cost Analysis (LCCA) work.

상수관로의 노후도 예측에 근거한 최적 개량 모형의 개발 (II) - 적용 및 분석 - (Development of Optimal Rehabilitation Model for Water Distribution System Based on Prediction of Pipe Deterioration (II) - Application and Analysis -)

  • 김응석;박무종;김중훈
    • 한국수자원학회논문집
    • /
    • 제36권1호
    • /
    • pp.61-74
    • /
    • 2003
  • 본 연구(II)는 연구(I)에서 제안한 상수관로의 노후도 예측에 근거한 최적 개량 모형을 A시를 대상으로 이를 적용하였다. 노후도 예측 모형은 굴착 및 실험이 필요한 14개 항목과 굴착 및 실험이 필요하지 않은 9개 항목을 구분하여 각각 관의 노후도 등급을 산정하였다. 노후도 예측 모형 적용 결과 항목개수에 따른 등급의 차는 l~2% 이내로 굴착 및 실험을 하지 않고도 노후도 예측이 가능한 것으로 나타났다. 최적 개량 모형은 노후도 항목별 최대 잔존수명과 제약조건 유무로 구분하여 적용하였다. 적용결과 항목별 최대 잔존수명의 증가에 따라 개량 시기 및 비용이 증가하였다. 또한 예산제약을 제외한 모형과 비교해서 예산제약을 고려한 모형이 모든 항목에서 비용이 증가되었다. 이는 예산제약을 고려할 경우 실제 주어진 최대 잔존수명 기간이내 매년 발생하는 예산의 최대 금액을 넘지 않은 대신에 매년 비슷한 비용으로 개량을 실시하기 때문인 것으로 판단되었다.

열화 및 공극을 고려한 원전 격납건물의 다층쉘요소모델과 내진성능 한계상태 (Multi-Layered Shell Model and Seismic Limit States of a Containment Building in Nuclear Power Plant Considering Deterioration and Voids)

  • 남현웅;홍기증
    • 한국지진공학회논문집
    • /
    • 제28권4호
    • /
    • pp.223-231
    • /
    • 2024
  • For the OPR1000, a standard power plant in Korea, an analytical model of the containment building considering voids and deterioration was built with multilayer shell elements. Voids were placed in the vulnerable parts of the analysis model, and the deterioration effects of concrete and rebar were reflected in the material model. To check the impact of voids and deterioration on the seismic performance of the containment building, iterative push-over analysis was performed on four cases of the analytical model with and without voids and deterioration. It was found that the effect of voids with a volume ratio of 0.6% on the seismic performance of the containment building was insignificant. The effect of strength reduction and cross-sectional area loss of reinforcement due to deterioration and the impact of strength increase of concrete due to long-term hardening offset each other, resulting in a slight increase in the lateral resistance of the containment building. To determine the limit state that adequately represents the seismic performance of the containment building considering voids and deterioration, the Ogaki shear strength equation, ASCE 43-05 low shear wall allowable lateral displacement ratio, and JEAC 4601 shear strain limit were compared and examined with the analytically derived failure point (ultimate point) in this study.

도시철도 전력설비의 노후화 판단을 위한 예측 프로그램 구현 (Implementation of Prediction Program for Deterioration Judgment on Substation Power Systems in Urban Railway)

  • 정호성;박영;강현일
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.881-885
    • /
    • 2013
  • In this paper, we present a deterioration judgment model of urban rail power equipment using driving history, the frequency and number of failures. In addition, we have developed a deterioration judgment program based on the derived failure rate. A deterioration judgment model of power equipments on metro system was designed to establish how much environmental factors, such as thermal cycling, humidity, overvoltage and partial discharge. The deterioration rate of the transformers followed the Arrhenius log life versus reciprocal Kelvin temperature (hotspot temperature) relation. The deterioration judgment program is linked to the online condition monitoring system of urban railway system. The deterioration judgment program is based on the user interface it is possible to apply immediately to the urban rail power equipment.

Comparison of regression model and LSTM-RNN model in predicting deterioration of prestressed concrete box girder bridges

  • Gao Jing;Lin Ruiying;Zhang Yao
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.39-47
    • /
    • 2024
  • Bridge deterioration shows the change of bridge condition during its operation, and predicting bridge deterioration is important for implementing predictive protection and planning future maintenance. However, in practical application, the raw inspection data of bridges are not continuous, which has a greater impact on the accuracy of the prediction results. Therefore, two kinds of bridge deterioration models are established in this paper: one is based on the traditional regression theory, combined with the distribution fitting theory to preprocess the data, which solves the problem of irregular distribution and incomplete quantity of raw data. Secondly, based on the theory of Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN), the network is trained using the raw inspection data, which can realize the prediction of the future deterioration of bridges through the historical data. And the inspection data of 60 prestressed concrete box girder bridges in Xiamen, China are used as an example for validation and comparative analysis, and the results show that both deterioration models can predict the deterioration of prestressed concrete box girder bridges. The regression model shows that the bridge deteriorates gradually, while the LSTM-RNN model shows that the bridge keeps great condition during the first 5 years and degrades rapidly from 5 years to 15 years. Based on the current inspection database, the LSTM-RNN model performs better than the regression model because it has smaller prediction error. With the continuous improvement of the database, the results of this study can be extended to other bridge types or other degradation factors can be introduced to improve the accuracy and usefulness of the deterioration model.

상수관로의 노후도 영향인자 및 가중치 산정에 관한 연구 (Estimation of Deterioration and Weighting Factors in Pipes of Water Supply Systems)

  • 김응석;김중훈;이현동
    • 상하수도학회지
    • /
    • 제16권6호
    • /
    • pp.686-699
    • /
    • 2002
  • The purpose of this study is to estimate deterioration factors and weighting factors in pipe network which each local self-governments takes rehabilitation and replacement work present time. Deterioration factors in pipe network are able to effected of specific province or location related with water supply. Most of water supply pipes are laid under the ground, it is hard to quantify deterioration degree of water system. Moreover, the timing and economic limitation and insufficient information on the spot survey gives a difficulty to look over how old water supply system is. Accordingly, this study collects and analyses five data as the laying environment, visual analysis, analysis of soil contents, analysis of pipe material, and questionary survey data in water pipe of A city. The deterioration factor estimates 14 factors with excavation and experimental analysis and 9 factors without excavation and experimental analysis. Also, the weighting factors are estimated by using the multiple linear regressions and the linear programming. The estimated deterioration factor and weighting results are compared the analysis result of visual, pipe material, and soil contents with the Probabilistic Neural Network Model. Consequently, the model results of estimated 9 factors in this study and 14 factors show the 1-2% difference. The result show that the proposed model could be used to decide the deterioration condition of pipe line with real excavation and experimental analysis.

RELIABILITY-BASED COMPONENT DETERIORATION MODEL FOR BRIDGE LIFE-CYCLE COST ANALYSIS

  • Rong-yau Huang;Wen-zheng Hsu
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.386-397
    • /
    • 2007
  • One major development in bridge life cycle cost analysis (LCCA) in recent years is to develop deterioration model for bridge components so that the times of repair/replacement throughout a component's life span can be properly determined. Taiwan also developed her own bridge LCCA model in 2003, integrating with the bridge inspection database in the local bridge management system (T-BMS). Under the framework of the local LCCA model, this study employs the reliability method in developing a deterioration model of bridge components. A component deteriorates through time in its reliability, which represents the probability of a component's condition index exceeds a user specified threshold. Model assumptions and rationale are described in the paper. The steps for applying the developed model are explained in detail. Results and findings are reported.

  • PDF

AN ECONOMIC PRODUCTION QUANTITY INVENTORY MODEL INVOLVING FUZZY DEMAND RATE AND FUZZY DETERIORATION RATE

  • De, Sujit-Kumar;A. Goswami;P.K. Kundu
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.251-260
    • /
    • 2003
  • Generally, in deriving the solution of economic production quantity (EPQ) inventory model, we consider the demand rate and deterioration rate as constant quantity. But in case of real life problems, the demand rate and deterioration rate are not actually constant but slightly disturbed from their original crisp value. The motivation of this paper is to consider a more realistic EPQ inventory model with finite production rate, fuzzy demand rate and fuzzy deterioration rate. The effect of the loss in production quantity due to faulty/old machine have also been taken into consideration. The methodology to obtain the optimum value of the fuzzy total cost is derived and a numerical example is used to illustrate the computation procedure. A sensitivity analysis is also carried out to get the sensitiveness of the tolarance of different input parameters.