• Title/Summary/Keyword: Detector materials

Search Result 503, Processing Time 0.028 seconds

Development of ZnS(Ag)/plastic dual scintillator sheet for simultaneous alpha- and beta-ray counting (알파 및 베타선 동시측정용 ZnS(Ag)/플라스틱 이중섬광체 검출센서 개발)

  • Seo, Bum-Kyoung;Woo, Zu-Hee;Kim, Gye-Hong;Lee, Kune-Woo;Lee, Dong-Gyu;jung, Chong-Hun
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2008
  • Dual scintillator for simultaneous alpha- and beta-ray counting used by detection materials of a surface contamination monitor was developed. In this study, preparation method was not a heat melting method but a solvent method, by which the counting material was manufactured by dissolving the polymer materials with solvent. It was simplified the preparation process. Plastic scintillator for beta-ray counting was prepared by solidifying the casting solution mixed with organic scintillator, polymer, and solvent. ZnS(Ag) scintillator layer was prepared by screen printing the paste solution mixed with ZnS(Ag), paste, and solvent onto the plastic layer. The good counting ability for alpha- and beta-ray using the ZnS(Ag)/plastic dual scintillator prepared and possibility for the counting material of surface contamination monitor was confirmed.

Detection Limit of a NaI(Tl) Survey Meter to Measure 131I Accumulation in Thyroid Glands of Children after a Nuclear Power Plant Accident

  • Takahiro Kitajima;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.131-143
    • /
    • 2023
  • Background: This study examined the detection limit of thyroid screening monitoring conducted at the time of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 using a Monte Carlo simulation. Materials and Methods: We calculated the detection limit of a NaI(Tl) survey meter to measure 131I accumulation in the thyroid gland of children. Mathematical phantoms of 1- and 5-year-old children were developed in the simulation of the Particle and Heavy Ion Transport code System code. Contamination of the body surface with eight radionuclides found after the FDNPP accident was assumed to have been deposited on the neck and shoulder area. Results and Discussion: The detection limit was calculated as a function of ambient dose rate. In the case of 40 Bq/cm2 contamination on the body surface of the neck, the present simulations showed that residual thyroid radioactivity corresponding to thyroid dose of 100 mSv can be detected within 21 days after intake at the ambient dose rate of 0.2 µSv/hr and within 11 days in the case of 2.0 µSv/hr. When a time constant of 10 seconds was used at the dose rate of 0.2 µSv/hr, the estimated survey meter output error was 5%. Evaluation of the effect of individual differences in the location of the thyroid gland confirmed that the measured value would decrease by approximately 6% for a height difference of ±1 cm and increase by approximately 65% for a depth of 1 cm. Conclusion: In the event of a nuclear disaster, simple measurements carried out using a NaI(Tl) scintillation survey meter remain effective for assessing 131I intake. However, it should be noted that the presence of short-half-life radioactive materials on the body surface affects the detection limit.

GC Capillary Column Installation (가스 크로마토그래피 캐필러리 컬럼 설치 가이드)

  • Matt James;Kirsty Ford
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.2.1-2.6
    • /
    • 2024
  • This article provides detailed instructions for the correct installation, maintenance, and troubleshooting of capillary gas chromatography (GC) columns. It emphasizes the importance of proper installation to ensure optimal performance and longevity of the column. The document covers various aspects such as column trimming, installation, conditioning, testing, storage, and ferrule selection. The installation process involves ensuring that the heated zones of the GC are cool before placing the column cage in the column oven. It is essential to avoid sharp bends or stress on the capillary column during installation and to connect the front end of the column into the GC inlet at the recommended insertion distance. The document also provides guidance on trimming the column, including the use of a ceramic wafer or capillary column cutter to achieve a clean, burr-free cut. For previously used columns, it recommends removing any capillary caps, positioning the nut and ferrule, and trimming 1-2 cm from the column. After installation, the column should be purged with carrier gas to remove any oxygen and avoid oxidizing the column. Conditioning the column involves ramping to the upper isothermal temperature limit and maintaining this temperature for a specified duration. It is crucial to maintain carrier gas flow during conditioning and not exceed the upper temperature limit of the column to avoid phase damage. The document also discusses testing column performance using a suitable method and performing a test injection to assess performance. It provides recommendations for column storage, including flame-sealing the capillary ends or using retention gaps for long-term storage. Additionally, it emphasizes the importance of routine maintenance and replacement of GC consumables to extend the column's lifetime. Ferrule selection is another important aspect covered in the article, with a variety of ferrule materials available for different applications. The characteristics of common ferrule options are presented in a table, including temperature limits, reusability, and suitability for specific detector types.

  • PDF

The Analysis of Dose in a Rectum by Multipurpose Brachytherapy Phantom (근접방사선치료용 다목적 팬톰을 이용한 직장 내 선량분석)

  • Huh, Hyun-Do;Kim, Seong-Hoon;Cho, Sam-Ju;Lee, Suk;Shin, Dong-Oh;Kwon, Soo-Il;Kim, Hun-Jung;Kim, Woo-Chul;K. Loh John-J.
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.223-229
    • /
    • 2005
  • Purpose: In this work we designed and made MPBP(Multi Purpose Brachytherapy Phantom). The MPBP enables one to reproduce the same patient set-up in MPBP as the treatment of the patient and we tried to get an exact analysis of rectal doses in the phantom without need of in-vivo dosimetry. Materials and Methods: Dose measurements were tried at a point of rectum 1, the reference point of rectum, with a diode detector for 4 patients treated with tandem and ovoid for a brachytherapy of a cervix cancer. Total 20 times of rectal dose measurements were made with 5 times a patient. The set-up variation of the diode detector was analyzed. The same patient set-ups were reproduced in self-made MPBP and then rectal doses were measured with TLD. Results: The measurement results of the diode detector showed that the set-up variation of the diode detector was the maximum $11.25{\pm}0.95mm$ in the y-direction for Patient 1 and the maximum $9.90{\pm}4.50mm,\;20.85{\pm}4.50mm,\;and\;19.15{\pm}3.33mm$ in the z-direction for Patient 2, 3, and 4, respectively. Un analyzing the degree of variation in 3 directions the more variation was showed in the z-direction than x- and y-direction except Patient 1. The results of TLD measurements in MPBP showed the relative maximum error of 8.6% and 7.7% at a point of rectum 1 for Patient 1 and 4, respectively and 1.7% and 1.2% for Patient 2 and 3, respectively. The doses measured at R1 and R2 were higher than those calculated except R point of Patient 2. this can be thought to related to the algorithm of dose calculation, whcih corrects for air and water but is guessed not to consider the correction for the scattered rays, but by considering the self-error (${\pm}5%$) TLD has the relative error of values measured and calculated was analyzed to be in a good agreement within 15%. Conclusion: The reproducibility of dose measurements under the same condition as the treatment could be achieved owing to the self-made MPMP and the dose at the point of interest could be analyzed accurately. If a treatment is peformed after achieving dose optimization using the data obtained in the phantom, dose will be able to be minimized to important organs.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

Ovarian Masses: Is Multi-detector Computed Tomography a Reliable Imaging Modality?

  • Khattak, Yasir Jamil;Hafeez, Saima;Alam, Tariq;Beg, Madiha;Awais, Mohammad;Masroor, Imrana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2627-2630
    • /
    • 2013
  • Background: Ovarian cancer continues to pose a major challenge to physicians and radiologists. It is the third most common gynecologic malignancy and estimated to be fifth leading cancer cause of death in women, constituting 23% of all gynecological malignancies. Multi-detector computed tomography (MDCT) appears to offer an excellent modality in diagnosing ovarian cancer based on combination of its availability, meticulous technique, efficacy and familiarity of radiologists and physicians. The aim of this study was to compute sensitivity, specificity, positive and negative predictive values and diagnostic accuracy of 64-slice MDCT in classifying ovarian masses; 95% confidence intervals were reported. Materials and Methods: We prospectively designed a cross-sectional analytical study to collect data from July 2010 to August 2011 from a tertiary care hospital in Karachi, Pakistan. A sample of 105 women aged between 15-80 years referred for 64-MDCT of abdomen and pelvis with clinical suspicion of malignant ovarian cancer, irrespective of stage of disease, were enrolled by non-probability purposive sampling. All patients who were already known cases of histologically proven ovarian carcinoma and having some contraindication to radiation or iodinated contrast media were excluded. Results: Our prospective study reports sensitivity, specificity; positive and negative predictive values with 95%CI and accuracy were computed. Kappa was calculated to report agreement among the two radiologists. For reader A, MDCT was found to have 92% (0.83, 0.97) sensitivity and 86.7% (0.68, 0.96) specificity, while PPV and NPV were 94.5% (0.86, 0.98) and 86.7% (0.63, 0.92), respectively. Accuracy reported by reader A was 90.5%. For reader B, sensitivity, specificity, PPV and NPV were 94.6% (0.86, 0.98) 90% (0.72, 0.97) 96% (0.88, 0.99) and 87.1% (0.69, 0.95) respectively. Accuracy computed by reader B was 93.3%. Excellent agreement was found between the two radiologists with a significant kappa value of 0.887. Conclusion: Based on our study results, we conclude MDCT is a reliable imaging modality in diagnosis of ovarian masses accurately with insignificant interobserver variability.

Fluoroscopic the equipment study in accordance with the entrance surface dose study of patients and practitioners (투시 검사 시 장비에 따른 환자와 시술자의 입사표면선량 연구)

  • Yang, Hae-Doo;Hong, Seon-Sook;Seong, Min-Sook;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.13-18
    • /
    • 2013
  • Purpose : Fluoroscopy equipment, depending on the type of changes that occur in the patient's position ESD and study the patient's scatter ray of ESD Practitioners considered a comparative analysis was to evaluate the correct dose. Materials and Methods : HITACHI four overtube type TU-8000 Flat Detector and Under tube C-Arm Philips' Multi Diagnost Eleva with Flat Detector type were measured by. Each devices is a measure of the patient's esd randophantom position in tabel unfors Xi multi funtion then fixed to the abdomen fluoroscopy and 10 seconds, spot was measured three times, practitioners of the incident surface dose by considering the patient's scatter ray of the table for each device in the average human stomach 21cm thickness acrylic phantom ($25cm{\times}25cm$) Place the practitioner position after position randophantom unfors Xi multi funtion in the thyroid and stomach 1 minute by a fixed one-time fluoroscopy and measured. Results : 10 seconds and the patient perspective of the c-arm ESD 1.2 times smaller on the AP and oblique measurements were measured in the 6-13 times smaller. spot positions to changes in the measured three times on the AP of the abdomen, ESD is 18 times smaller c-arm measurements and the oblique measurement was 19-30 times smaller. And 1 minute at practitioners fluoroscopy esd in the thyroid 2.12 times the c-arm, chest 1.75 times less the dose was measured. On the AP, depending on the device, but the lack of dose difference oblique positions of the two devices depending on changes in the area due to changes in both the AP than on the dose increased, the difference in dose between the two devices, the maximum difference was approximately 27 times. Conclusion : Fluoroscopic equipment at the time of inspection in accordance with changes in dose according to the patient and the patient's positions changes, because the area of the scatter ray considering the change of dose measurements be made, and study of the equipment according to the characteristics of the efficiency and the exposure of the patient and practitioner is considered smooth study equipment manufacturers that can be done is to build the system and think that is also important. Various fluoroscopy when you check future changes in many factors of change in dose for the equipment in the laboratory system by considering the scatter ray radiation shielding for the management to take advantage of reckless undertube have been utilized as more exposure Reduction activities can help is considered as the direction.

  • PDF

Effects of Gas Background Temperature Difference(Emissivity) on OGI(Optical Gas Image) Clarity (가스의 배경 온도 차이(방사율)가 OGI(Optical Gas Image)의 선명도에 미치는 영향)

  • Park, Su-Ri;Han, Sang-Wook;Kim, Byung-Jick;Hong, Cheol-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2017
  • Currently gas safety management in the industrial field has been done by LDAR as contact method or methane leak detector as non-contact method. But LDAR method requires a lot of man-power and methane leak detector have the limitation of methane only. Therefore the Research on the OGI(optical gas image) has big attention by industry. This research was undertaken to see the effect of background temperature difference of gas cloud on the clarity of OGI. The background temperature control panel was constructed to cool down the background temperature. OGI was taken at the various methane gas ejection rate and the designed temperature difference. The experimental results showed that the OGI(when the temperature difference is $-6^{\circ}C$) is more clear thane the OGI(when the temperature difference is zero). To quantify the clarity difference, MATLAB's RGB analysis method was employed. The RGB value of the OGI at ${\Delta}T-6^{\circ}C$ was 20% lower than the OGI at ${\Delta}T0^{\circ}C$. The clarity difference by T difference can be explained by the total radiation law. When the background temperature of the gas is lower than the air temperature, the radiation energy coming into the OGI lens is increasing. As the energy is increasing, the OGI image becomes clear.

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.

A research on remote X-ray detector design development for marketing in field diagnosis service (현장 진단 서비스 시장 공략을 위한 '무선 X-ray 디텍터' 디자인개발에 관한 연구)

  • Song, Seong Il
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.196-205
    • /
    • 2017
  • In recent years, the service design in the medical sector evolves through practical service research and development that can visualize both intangible and intangible service elements in an integrative way and derive innovative solutions to help customers feel the service more important value. With the improvement of personal income, interest in medical welfare and well-being is increasing day by day, and the focus of the medical sector shifts from the concept of treatment of diseases and illness to preventive medicine. In response to this trend, research and development of home health care system, which greatly reduces the time and space constraint of health checkup and health care by combining ubiquitous concept with medical welfare, are being actively conducted, and the needs for improving products and medical environment based on user-centered medical service and user needs in accordance with the Health Care 3.0 Era, it becomes necessary to develop on-site medical diagnostic products that reflect user-centered needs and needs. This study is intended to research and develop a product that sufficiently reflects the needs of users by applying suitable materials and shape for on-site diagnostic product in researching and developing Wireless X-ray Detector.