• Title/Summary/Keyword: Detection time

Search Result 8,904, Processing Time 0.042 seconds

Design of Remote Early Dementia Diagnosis Systems (원격 치매 조기 진단 시스템 설계)

  • Choi, Jongmyung;Jeon, Gyeong-Suk;Kim, Sunkyung;Choi, Jungmin;Rhyu, Dong Young;Yoon, Sook
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.27-32
    • /
    • 2020
  • Along with the aging of the population, the number of dementia patients is increasing, and the social and economic burden is also increasing. Currently, the effective way to manage dementia patients is to identify patients with dementia early. However, in rural and island areas where medical staff are scarce, there is a problem that it is difficult to visit a hospital and get an early examination. Therefore, we propose a remote early detection system for dementia to solve the problems. The remote dementia early diagnosis system is a system that allows a patient to receive examination and treatment from a remote dementia expert using remote medical technology based on real-time image communication. The remote early diagnosis system for dementia consists of a local client system used by medical staff at health centers in the island, an image server that transmits, stores and manages images, and an expert client used by remote dementia experts. The local client subsystem satisfies the current medical law's remote collaboration by allowing the patient to use it with the health center's medical staff. In addition, expert clients are used by dementia experts, and can store/manage patient information, analyze patient history information, and predict the degree of dementia progression in the future.

Analysis on Normal Ionospheric Trend and Detection of Ionospheric Disturbance by Earthquake (정상상황 전리층 경향 분석 및 지진에 의한 전리층 교란검출)

  • Kang, Seonho;Song, Junesol;Kim, O-jong;Kee, Changdon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.49-56
    • /
    • 2018
  • As the energy generated by earthquake, tsunami, etc. propagates through the air and disturbs the electron density in the ionosphere, the perturbation can be detected by analyzing the ionospheric delay in satellite signal. The electron density in the ionosphere is affected by various factors such as solar activity, latitude, season, and local time. To distinguish from the anomaly, therefore, it is required to inspect the normal trend of the ionosphere. Also, as the perturbation magnitude diminishes by distance it is necessary to develop an appropriate algorithm to detect long-distance disturbances. In this paper, normal condition ionosphere trend is analyzed via IONEX data. We selected monitoring value that has no tendency and developed an algorithm to effectively detect the long-distance ionospheric disturbances by using the lasting characteristics of the disturbances. In the end, we concluded the $2^{nd}$ derivative of ionospheric delay would be proper monitoring value, and the false alarm with the developed algorithm turned out to be 1.4e-6 level. It was applied to 2011 Tohoku earthquake case and the ionospheric disturbance was successfully detected.

Research on the Classification Model of Similarity Malware using Fuzzy Hash (퍼지해시를 이용한 유사 악성코드 분류모델에 관한 연구)

  • Park, Changwook;Chung, Hyunji;Seo, Kwangseok;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.6
    • /
    • pp.1325-1336
    • /
    • 2012
  • In the past about 10 different kinds of malicious code were found in one day on the average. However, the number of malicious codes that are found has rapidly increased reachingover 55,000 during the last 10 year. A large number of malicious codes, however, are not new kinds of malicious codes but most of them are new variants of the existing malicious codes as same functions are newly added into the existing malicious codes, or the existing malicious codes are modified to evade anti-virus detection. To deal with a lot of malicious codes including new malicious codes and variants of the existing malicious codes, we need to compare the malicious codes in the past and the similarity and classify the new malicious codes and the variants of the existing malicious codes. A former calculation method of the similarity on the existing malicious codes compare external factors of IPs, URLs, API, Strings, etc or source code levels. The former calculation method of the similarity takes time due to the number of malicious codes and comparable factors on the increase, and it leads to employing fuzzy hashing to reduce the amount of calculation. The existing fuzzy hashing, however, has some limitations, and it causes come problems to the former calculation of the similarity. Therefore, this research paper has suggested a new comparison method for malicious codes to improve performance of the calculation of the similarity using fuzzy hashing and also a classification method employing the new comparison method.

A Design of Statistical Analysis Service Model to Analyze AR-based Educational Contents (AR기반 교육용 콘텐츠분석을 위한 통계분석서비스 모형 설계)

  • Yun, BongShik;Yoo, Sowol
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.66-72
    • /
    • 2020
  • As the online education market expands, educational contents with various presentation methods are being developed and released. In addition, it is imperative to develop content that reflects the usability and user environment of users who use this educational content. However, for qualitative growth of contents that will support quantitative expansion of markets, existing model analysis methods are urgently needed at a time when development direction of newly developed contents is secured. In this process of content development, a typical model for setting development goals is needed, as the rules of the prototype affect the entire development process and the final development outcome. It can also provide a positive benefit that screens the issue of performance dualization between processes due to the absence of communication between a single entity or between a number of entities. In the case of AR-based educational content which is effective to secure data necessary for development by securing samples of similar categories because there are not enough ready-made samples released. Therefore, a big data statistical analysis service is needed that can easily collect data and make decisions using big data. In this paper, we would like to design analysis services that enable the selection and detection of intuitive multidimensional factors and attributes, and propose big data-based statistical analysis services that can assist cooperative activities within an organization or among many companies.

Measurement of Sulfur Dioxide Concentration Using Wavelength Modulation Spectroscopy With Optical Multi-Absorption Signals at 7.6 µm Wavelength Region (7.6 µm 파장 영역의 다중 광 흡수 신호 파장 변조 분광법을 이용한 이산화황 농도 측정)

  • Song, Aran;Jeong, Nakwon;Bae, Sungwoo;Hwang, Jungho;Lee, Changyeop;Kim, Daehae
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2020
  • According to the World Health Organization (WHO), air pollution is a typical health hazard, resulting in about 7 million premature deaths each year. Sulfur dioxide (SO2) is one of the major air pollutants, and the combustion process with sulfur-containing fuels generates it. Measuring SO2 generation in large combustion environments in real time and optimizing reduction facilities based on measured values are necessary to reduce the compound's presence. This paper describes the concentration measurement for SO2, a particulate matter precursor, using a wavelength modulation spectroscopy (WMS) of tunable diode laser absorption spectroscopy (TDLAS). This study employed a quantum cascade laser operating at 7.6 ㎛ as a light source. It demonstrated concentration measurement possibility using 64 multi-absorption lines between 7623.7 and 7626.0 nm. The experiments were conducted in a multi-pass cell with a total path length of 28 and 76 m at 1 atm, 296 K. The SO2 concentration was tested in two types: high concentration (1000 to 5000 ppm) and low concentration (10 ppm or less). Additionally, the effect of H2O interference in the atmosphere on the measurement of SO2 was confirmed by N2 purging the laser's path. The detection limit for SO2 was 3 ppm, and results were compared with the electronic chemical sensor and nondispersive infrared (NDIR) sensor.

Prevalence of JAK2 V617F, CALR, and MPL W515L Gene Mutations in Patients with Essential Thrombocythemia in Kurdistan Region of Iraq

  • Saeed, Bestoon Muhammad;Getta, Hisham Arif;Khoshnaw, Najmaddin;Abdulqader, Goran;Abdulqader, Aveen M. Raouf;Mohammed, Ali Ibrahim
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • Essential thrombocythemia (ET) is a clonal bone marrow stem cell disorder, primarily involving the megakaryocytic lineage. The WHO 2016 guidelines include the molecular detection of JAK2, MPL, and CALR mutations as a major diagnostic criterion for ET. This study aimed to determine the frequency of JAK2 V617F, MPL W515L, and CALR mutations in Iraqi Kurdish patients afflicted with ET, and to analyze their clinical and hematological features. A total of 73 Iraqi Kurdish patients with ET were enrolled as subjects, and analysis was achieved utilizing real-time PCR. The frequency of JAK2 V617F, CALR, and MPL W515L mutations was determined to be 50.7%, 22%, and 16.4%, respectively. No statistically significant difference was obtained when considering the age and gender among different genotypes. The JAK2 V617F mutated patients had significantly higher white blood cell counts and hemoglobin levels than the CALR-positive patients (P-value=0.000, 0.007, respectively), MPL W515L-positive patients (P-value=0.000, 0.000, respectively), and triple negative patients (P-value=0.000, 0.000, respectively). Also, the JAK2 V617F mutated patients showed higher platelet count as compared to the MPL W515L-positive patients (P-value=0.02) and triple negative patients (P-value=0.04). Furthermore, significantly lower white blood cell count and hemoglobin levels were associated with CALR positivity (P-value=0.000, 0.01, respectively), MPL W515L-positivity (P-value=0.001, 0.000, respectively), and triple negativity (P-value=0.000, 0.000, respectively), as compared to patients with combined mutations. In conclusion, apart from a relatively high frequency of MPL W515L mutation, our data is comparable to earlier reports, and highlights the importance of genotyping the JAK2 V617F, MPL W515L, and CALR mutations for accurate diagnosis of patients with ET.

A Development of Welding Information Management and Defect Inspection Platform based on Artificial Intelligent for Shipbuilding and Maritime Industry (인공지능 기반 조선해양 용접 품질 정보 관리 및 결함 검사 플랫폼 개발)

  • Hwang, Hun-Gyu;Kim, Bae-Sung;Woo, Yun-Tae;Yoon, Young-Wook;Shin, Sung-chul;Oh, Sang-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-201
    • /
    • 2021
  • The welding has a high proportion of the production and drying of ships or offshore plants. Non-destructive testing is carried out to verify the quality of welds in Korea, radiography test (RT) is mainly used. Currently, most shipyards adopt analog-type techniques to print the films through the shoot of welding parts. Therefore, the time required from radiography test to pass or fail judgment is long and complex, and is being manually carried out by qualified inspectors. To improve this problem, this paper covers a platform for scanning and digitalizing RT films occurring in shipyards with high resolution, accumulating them in management servers, and applying artificial intelligence (AI) technology to detect welding defects. To do this, we describe the process of designing and developing RT film scanning equipment, welding inspection information integrated management platform, fault reading algorithms, visualization software, and testing and verification of each developed element in conjunction.

Comparative Analysis by Batch Size when Diagnosing Pneumonia on Chest X-Ray Image using Xception Modeling (Xception 모델링을 이용한 흉부 X선 영상 폐렴(pneumonia) 진단 시 배치 사이즈별 비교 분석)

  • Kim, Ji-Yul;Ye, Soo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.547-554
    • /
    • 2021
  • In order to quickly and accurately diagnose pneumonia on a chest X-ray image, different batch sizes of 4, 8, 16, and 32 were applied to the same Xception deep learning model, and modeling was performed 3 times, respectively. As a result of the performance evaluation of deep learning modeling, in the case of modeling to which batch size 32 was applied, the results of accuracy, loss function value, mean square error, and learning time per epoch showed the best results. And in the accuracy evaluation of the Test Metric, the modeling applied with batch size 8 showed the best results, and the precision evaluation showed excellent results in all batch sizes. In the recall evaluation, modeling applied with batch size 16 showed the best results, and for F1-score, modeling applied with batch size 16 showed the best results. And the AUC score evaluation was the same for all batch sizes. Based on these results, deep learning modeling with batch size 32 showed high accuracy, stable artificial neural network learning, and excellent speed. It is thought that accurate and rapid lesion detection will be possible if a batch size of 32 is applied in an automatic diagnosis study for feature extraction and classification of pneumonia in chest X-ray images using deep learning in the future.

Non-face-to-face online home training application study using deep learning-based image processing technique and standard exercise program (딥러닝 기반 영상처리 기법 및 표준 운동 프로그램을 활용한 비대면 온라인 홈트레이닝 어플리케이션 연구)

  • Shin, Youn-ji;Lee, Hyun-ju;Kim, Jun-hee;Kwon, Da-young;Lee, Seon-ae;Choo, Yun-jin;Park, Ji-hye;Jung, Ja-hyun;Lee, Hyoung-suk;Kim, Joon-ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.577-582
    • /
    • 2021
  • Recently, with the development of AR, VR, and smart device technologies, the demand for services based on non-face-to-face environments is also increasing in the fitness industry. The non-face-to-face online home training service has the advantage of not being limited by time and place compared to the existing offline service. However, there are disadvantages including the absence of exercise equipment, difficulty in measuring the amount of exercise and chekcing whether the user maintains an accurate exercise posture or not. In this study, we develop a standard exercise program that can compensate for these shortcomings and propose a new non-face-to-face home training application by using a deep learning-based body posture estimation image processing algorithm. This application allows the user to directly watch and follow the trainer of the standard exercise program video, correct the user's own posture, and perform an accurate exercise. Furthermore, if the results of this study are customized according to their purpose, it will be possible to apply them to performances, films, club activities, and conferences

Enzyme-Free Glucose Sensing with Polyaniline-Decorated Flexible CNT Fiber Electrode (Polyaniline을 이용한 CNT fiber 유연 전극 기반의 비효소적 글루코스 검출)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • As the demand for wearable devices increases, many studies have been studied on the development of flexible electrode materials recently. In particular, the development of high-performance flexible electrode materials is very important for wearable sensors for healthcare because it is necessary to continuously monitor and accurately detect body information such as body temperature, heart rate, blood glucose, and oxygen concentration in real time. In this study, we fabricated the nonenzymatic glucose sensor based on polyaniline/carbon nanotube fiber (PANI/CNT fiber) electrode. PANI layer was synthesized on the flexible CNT fiber electrode through electrochemical polymerization process in order to improve the performance of a flexible CNT fiber based electrode material. Surface morphology of the PANI/CNT fiber electrode was observed by scanning electron microscopy. And its electrochemical characteristics were investigated by chronoamperometry, cyclic voltammetry, electrochemical impedance spectroscopy. Compared to bare CNT fiber electrode, this PANI/CNT fiber electrode exhibited small electron transfer resistance, low peak separation potential and large surface area, resulting in enhanced sensing properties for glucose such as wide linear range (0.024~0.39 and 1.56~50 mM), high sensitivity (52.91 and 2.24 ㎂/mM·cm2), low detection limit (2 μM) and good selectivity. Therefore, it is expected that it will be possible to develop high performance CNT fiber based flexible electrode materials using various nanomaterials.