Browse > Article
http://dx.doi.org/10.15324/kjcls.2021.53.1.41

Prevalence of JAK2 V617F, CALR, and MPL W515L Gene Mutations in Patients with Essential Thrombocythemia in Kurdistan Region of Iraq  

Saeed, Bestoon Muhammad (Department of Hematology, Hiwa Hemato-Oncology Center)
Getta, Hisham Arif (Department of Pathology, College of Medicine, University of Sulaymaniyah)
Khoshnaw, Najmaddin (Department of Hematology, Hiwa Hemato-Oncology Center)
Abdulqader, Goran (Department of Pathology, College of Medicine, University of Sulaymaniyah)
Abdulqader, Aveen M. Raouf (Department of Pathology, College of Medicine, University of Sulaymaniyah)
Mohammed, Ali Ibrahim (Department of Pathology, College of Medicine, University of Sulaymaniyah)
Publication Information
Korean Journal of Clinical Laboratory Science / v.53, no.1, 2021 , pp. 41-48 More about this Journal
Abstract
Essential thrombocythemia (ET) is a clonal bone marrow stem cell disorder, primarily involving the megakaryocytic lineage. The WHO 2016 guidelines include the molecular detection of JAK2, MPL, and CALR mutations as a major diagnostic criterion for ET. This study aimed to determine the frequency of JAK2 V617F, MPL W515L, and CALR mutations in Iraqi Kurdish patients afflicted with ET, and to analyze their clinical and hematological features. A total of 73 Iraqi Kurdish patients with ET were enrolled as subjects, and analysis was achieved utilizing real-time PCR. The frequency of JAK2 V617F, CALR, and MPL W515L mutations was determined to be 50.7%, 22%, and 16.4%, respectively. No statistically significant difference was obtained when considering the age and gender among different genotypes. The JAK2 V617F mutated patients had significantly higher white blood cell counts and hemoglobin levels than the CALR-positive patients (P-value=0.000, 0.007, respectively), MPL W515L-positive patients (P-value=0.000, 0.000, respectively), and triple negative patients (P-value=0.000, 0.000, respectively). Also, the JAK2 V617F mutated patients showed higher platelet count as compared to the MPL W515L-positive patients (P-value=0.02) and triple negative patients (P-value=0.04). Furthermore, significantly lower white blood cell count and hemoglobin levels were associated with CALR positivity (P-value=0.000, 0.01, respectively), MPL W515L-positivity (P-value=0.001, 0.000, respectively), and triple negativity (P-value=0.000, 0.000, respectively), as compared to patients with combined mutations. In conclusion, apart from a relatively high frequency of MPL W515L mutation, our data is comparable to earlier reports, and highlights the importance of genotyping the JAK2 V617F, MPL W515L, and CALR mutations for accurate diagnosis of patients with ET.
Keywords
Essential polycythemia; JAK2 V617F; MPL; W515L; CALR mutation; Iraqi Kurds;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang J, Zhang B, Chen B, Zhou R, Zhang Q, Li J, et al. JAK2, MPL, and CALR mutations in Chinese Han patients with essential thrombocythemia. Hematology. 2017;22:145-148. https://doi.org/10.1080/10245332.2016.1252003   DOI
2 Kim BH, Cho YU, Bae MH, Jang S, Seo EJ, Chi HS, et al. JAK2 V617F, MPL, and CALR mutations in Korean patients with essential thrombocythemia and primary myelofibrosis. J Korean Med Sci. 2015;30:882-888. https://doi.org/10.3346/jkms.2015.30.7.882   DOI
3 Kim SY, Im K, Park SN, Kwon J, Kim J, Lee DS. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms primary myelofibrosis, essential thrombocythemia, polycythemia vera, and myeloproliferative neoplasm, unclassifiable. Am J Clin Pathol. 2015;143:635-644. https://doi.org/10.1309/AJCPUAAC16LIWZMM   DOI
4 Lin Y, Liu E, Sun Q, Ma J, Li Q, Cao Z, et al. The prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1-negative myeloproliferative neoplasms. Am J Clin Pathol. 2015;144:165-171. https://doi.org/10.1309/AJCPALP51XDIXDDV   DOI
5 Lang T, Nie Y, Wang Z, Huang Q, An L, Wang Y, et al. Correlation analysis between JAK2, MPL, and CALR mutations in patients with myeloproliferative neoplasms of Chinese Uygur and Han nationality and their clinical characteristics. J Int Med Res. 2018;46:4650-4659. https://doi.org/10.1177/0300060518787719   DOI
6 Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379-2390. https://doi.org/10.1056/NEJMoa1311347   DOI
7 Kim HR, Choi HJ, Kim YK, Kim HJ, Shin JH, Suh SP, et al. Allelic expression imbalance of JAK2 V617F mutation in BCR-ABL negative myeloproliferative neoplasms. PLoS ONE. 2013;8:e52518. https://doi.org/10.1371/journal.pone.0052518   DOI
8 Vainchenker W, Constantinescu SN, Plo I. Recent advances in understanding myelofibrosis and essential thrombocythemia. F1000 Research. 2016;5:1-13. https://doi.org/10.12688/f1000research.8081.1   DOI
9 Ji L, Qian M, Wu N, Wu J. Significance of combined detection of JAK2V617F, MPL and CALR gene mutations in patients with essential thrombocythemia. Exp Ther Med. 2017;13:947-951. https://doi.org/10.3892/etm.2017.4077   DOI
10 Wu Z, Zhang X, Xu X, Chen Y, Hu T, Kang Z, et al. The mutation profile of JAK2 and CALR in Chinese Han patients with Philadelphia chromosome-negative myeloproliferative neoplasms. J Hematol Oncol. 2014;7:1-10.   DOI
11 Ojeda MJ, Bragos IM, Calvo KL, Williams GM, Carbonell MM, Pratti AF. CALR, JAK2 and MPL mutation status in argentinean patients with BCR-ABL1- negative myeloproliferative neoplasms. Hematology. 2018;23:208-211. https://doi.org/10.1080/10245332.2017.1385891   DOI
12 Misawa K, Yasuda H, Araki M, Ochiai T, Morishita S, Shirane S, et al. Mutational subtypes of JAK2 and CALR correlate with different clinical features in Japanese patients with myeloproliferative neoplasms. Int J Hematol. 2018;107:673-680. https://doi.org/10.1007/s12185-018-2421-7   DOI
13 Syeed N. JAK2 and Beyond: JAK2V617 mutational study of myeloproliferative disorders and haematological malignancies. Asian Pac J Cancer Prev. 2019;20:3611-3615. https://doi.org/10.31557/APJCP.2019.20.12.3611   DOI
14 Jaradat SA, Khasawneh R, Kamal N, Matalka I, Al-Bishtawi M, Al-Sweedan S, et al. Analysis of JAK2V617F mutation in Jordanian patients with myeloproliferative neoplasms. Hematol Oncol Stem Cell Ther. 2015;8:160-166. https://doi.org/10.1016/j.hemonc.2015.07.004   DOI
15 Nancy LM, Samantha GB, Javier GE, Perla CP, Valeria GO, Virginia RN, et al. The mutation profile of JAK2, MPL and CALR in Mexican patients with Philadelphia chromosome-negative myeloproliferative neoplasms. Hematol Oncol Stem Cell Ther. 2015;8:16-21. https://doi.org/10.1016/j.hemonc.2014.12.002   DOI
16 Vu HA, Thao TT, Dong CV, Vuong NL, Chuong HQ, Van PNT, et al. Clinical and hematological relevance of JAK2V617F, CALR, and MPL mutations in Vietnamese patients with essential thrombocythemia. Asian Pac J Cancer Prev. 2019;20:2775-2780. https://doi.org/10.31557/APJCP.2019.20.9.2775   DOI
17 Li MY, Chao HY, Sun AN, Qiu HY, Jin ZM, Tang XW, et al. Clinical significance of JAK2, CALR, and MPL gene mutations in 1648 Philadelphia chromosome negative myeloproliferative neoplasms patients from a single center. chinese Journal of Hematology. 2017;38:295-300. https://doi.org/10.3760/cma.j.issn.0253-2727.2017.04.007   DOI
18 Geduk A, Atesoglu EB, Tarkun P, Mehtap O, Hacihanefioglu A, Demirsoy ET, et al. The role of beta-catenin in Bcr/Abl negative myeloproliferative neoplasms: an immunohistochemical study. Clin Lymphoma Myeloma Leuk. 2015;15:785-789. https://doi.org/10.1016/j.clml.2015.08.084   DOI
19 Lussana F, Carobbio A, Salmoiraghi S, Guglielmelli P, Vannucchi AM, Bottazzi B, et al. Driver mutations (JAK2V617F, MPLW515L/K or CALR), pentraxin-3 and C-reactive protein in essential thrombocythemia and polycythemia vera. J Hematol Oncol. 2017;10:2-8. https://doi.org/10.1186/s13045-017-0425-z   DOI
20 Gardner JA, Peterson JD, Turner SA, Soares BL, Lancor CR, Dos Santos LL, et al. Detection of CALR mutation in clonal and non clonal hematologic diseases using fragment analysis and next-generation sequencing. Am J Clin Pathol. 2016;146:448-455. https://doi.org/10.1093/ajcp/aqw129   DOI
21 Xu W, Li JY, Xia J, Zhang SJ, Fan L, Qiao C. MPL W515L mutation in Chinese patients with myeloproliferative diseases. Leuk Lymphoma. 2008;49:955-958. https://doi.org/10.1080/10428190802035966   DOI
22 Chen X, Qi X, Tan Y, Xu Z, Xu A, Zhang L, et al. Detection of MPL exon10 mutations in 103 Chinese patients with JAK2V617F-negative myeloproliferative neoplasms. Blood Cells Mol Dis. 2011;47:67-71. https://doi.org/10.1016/j.bcmd.2011.04.004   DOI
23 Toyama K, Karasawa M, Yokohama A, Mitsui T, Uchiumi H, Saitoh T, et al. Differences in the JAK2 and MPL mutation status in the cell lineages of the bcr/abl-negative chronic myeloproliferative neoplasm subtypes. Intern Med. 2011;50:2557-2561. https://doi.org/10.2169/internalmedicine.50.5429   DOI
24 Smaili W, Doubaj Y, Laarabi FZ, Lyahyai J, Kerbout M, Mikdame M, et al. CALR gene mutational profile in myeloproliferative neoplasms with nonmutated JAK2 in Moroccan patients: a case series and germline in-frame deletion. Curr Res Transl Med. 2017;65:15-29. https://doi.org/10.1016/j.retram.2016.08.002   DOI
25 Schnittger S, Bacher U, Eder C, Dicker F, Alpermann T, Grossmann V, et al. Molecular analyses of 15,542 patients with suspected BCR-ABL1-negative myeloproliferative disorders allow to develop a stepwise diagnostic workflow. Haematologica. 2012;97:1582-1585.
26 Antonioli E, Guglielmelli P, Pancrazzi A, Bogani C, Verrucci M, Ponziani V, et al. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia. 2005;19:1847-1849. https://doi.org/10.1038/sj.leu.2403902   DOI
27 Lee KK, Cho H, Chi H, Kim DY, Chae SL, Huh HJ. A Case of postessential thrombocythemia myelofibrosis with severe osteosclerosis. Korean J Lab Med. 2010;30:122-125. https://doi.org/10.3343/kjlm.2010.30.2.122   DOI
28 Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: it all makes sense. Blood. 2005;105:4187-4190. https://doi.org/10.1182/blood-2005-03-1287   DOI
29 Ma W, Kantarjian H, Zhang X, Yeh C, Zhang Z, Verstovsek S, et al. Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias. J Mol Diagn. 2009;11:49-53. https://doi.org/10.2353/jmoldx.2009.080114   DOI
30 Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054-1061. https://doi.org/10.1016/S0140-6736(05)71142-9   DOI