• Title/Summary/Keyword: Detection time

Search Result 8,942, Processing Time 0.037 seconds

Real-time Slant Face detection using improvement AdaBoost algorithm (개선한 아다부스트 알고리즘을 이용한 기울어진 얼굴 실시간 검출)

  • Na, Jong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.3
    • /
    • pp.280-285
    • /
    • 2008
  • The traditional face detection method is to use difference picture method are used to detect movement. However, most do not consider this mathematical approach using real-time or real-time implementation of the algorithm is complicated, not easy. This paper, the first to detect real-time facial image is converted YCbCr and RGB video input. Next, you convert the difference between video images of two adjacent to obtain and then to conduct Glassfire Labeling. Labeling value compared to the threshold behavior Area recognizes and converts video extracts. Actions to convert video to conduct face detection, and detection of facial characteristics required for the extraction and use of AdaBoost algorithm.

  • PDF

Rapid Detection of Enterobacter sakazakii Using TaqMan Real-Time PCR Assay

  • Kang, Eun-Sil;Nam, Yong-Suk;Hong, Kwang-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.516-519
    • /
    • 2007
  • Enterobacter sakazakii is an emerging food pathogen, which induces severe meningitis and sepsis in neonates and infants, with a high fatality rate. The disease is generally associated with the ingestion of contaminated infant formula. In this study, we describe the development of a real-time PCR protocol to identify E. sakazakii using a TaqMan probe, predicated on the nucleotide sequence data of the 168 rRNA gene obtained from a variety of pathogens. To detect E. sakazakii, four primer sets and one probe were designed. Five strains of E. sakazakii and 28 non-E. sakazakii bacterial strains were used in order to ensure the accuracy of detection. The PCR protocol successfully identified all of the E. sakazakii strains, whereas the 28 non-E. sakazakii strains were not detected by this method. The detection limits of this method for E. sakazakii cells and purified genomic DNA were 2.3 CFU/ assay and 100 fg/assay, respectively. These findings suggest that our newly developed TaqMan real-time PCR method should prove to be a rapid, sensitive, and quantitative method for the detection of E. sakazakii.

A Study on Detection Characteristic of Fiber Optic ROTDR Sensor for Real-Time Mornitoring (실시간감시를 위한 광섬유 ROTDR센서의 탐지특성 연구)

  • Park, Hyung-Jun;Kim, In-Soo
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.367-372
    • /
    • 2016
  • We Designed and Conduct a study on the basic intrusion detection research for outside intruder, which can determine the location and the weight of an intruder into infrastructure, by using Fiber-Optic ROTDR( Rayleigh Optical Time Domain Reflectometer) sensor, which are buried in the sand, were prepared to respond the intruder effects. The signal of ROTDR was analyzed to confirm the detection performance. The weight could be detected as 4 grades, such as 20kg, 40kg, 60kg, and 80kg. which used long distance fiber for intruder detection on wide area. This sensor was possible for application of real-time monitoring of infrastructures.

A Study on Real-Time Fault Monitoring Detection Method of Bearing Using the Infrared Thermography (적외선 열화상을 이용한 베어링의 실시간 고장 모니터링 검출기법에 관한 연구)

  • Kim, Ho-Jong;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.330-335
    • /
    • 2013
  • Since real-time monitoring system like a fault early detection has been very important, infrared thermography technique as a new diagnosis method was proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with the frequency data of the existing. As results, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally it was confirmed that the infrared technique was useful for real-time detection of the bearing damages.

CNN based Sound Event Detection Method using NMF Preprocessing in Background Noise Environment

  • Jang, Bumsuk;Lee, Sang-Hyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.20-27
    • /
    • 2020
  • Sound event detection in real-world environments suffers from the interference of non-stationary and time-varying noise. This paper presents an adaptive noise reduction method for sound event detection based on non-negative matrix factorization (NMF). In this paper, we proposed a deep learning model that integrates Convolution Neural Network (CNN) with Non-Negative Matrix Factorization (NMF). To improve the separation quality of the NMF, it includes noise update technique that learns and adapts the characteristics of the current noise in real time. The noise update technique analyzes the sparsity and activity of the noise bias at the present time and decides the update training based on the noise candidate group obtained every frame in the previous noise reduction stage. Noise bias ranks selected as candidates for update training are updated in real time with discrimination NMF training. This NMF was applied to CNN and Hidden Markov Model(HMM) to achieve improvement for performance of sound event detection. Since CNN has a more obvious performance improvement effect, it can be widely used in sound source based CNN algorithm.

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

A new damage index for detecting sudden change of structural stiffness

  • Chen, B.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.315-341
    • /
    • 2007
  • A sudden change of stiffness in a structure, associated with the events such as weld fracture and brace breakage, will cause a discontinuity in acceleration response time histories recorded in the vicinity of damage location at damage time instant. A new damage index is proposed and implemented in this paper to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. The proposed damage index is suitable for online structural health monitoring applications. It can also be used in conjunction with the empirical mode decomposition (EMD) for damage detection without using the intermittency check. Numerical simulation using a five-story shear building under different types of excitation is executed to assess the effectiveness and reliability of the proposed damage index and damage detection approach for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also examined. The results from this study demonstrate that the damage index and damage detection approach proposed can accurately identify the damage time instant and location in the building due to a sudden loss of stiffness if measurement noise is below a certain level. The relation between the damage severity and the proposed damage index is linear. The wavelet-transform (WT) and the EMD with intermittency check are also applied to the same building for the comparison of detection efficiency between the proposed approach, the WT and the EMD.

Time-Frequency Domain Impulsive Noise Detection System in Speech Signal (음성 신호에서의 시간-주파수 축 충격 잡음 검출 시스템)

  • Choi, Min-Seok;Shin, Ho-Seon;Hwang, Young-Soo;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • This paper presents a new impulsive noise detection algorithm in speech signal. The proposed method employs the frequency domain characteristic of the impulsive noise to improve the detection accuracy while avoiding the false-alarm problem by the pitch of the speech signal. Furthermore, we proposed time-frequency domain impulsive noise detector that utilizes both the time and frequency domain parameters which minimizes the false-alarm problem by mutually complementing each other. As the result, the proposed time-frequency domain detector shows the best performance with 99.33 % of detection accuracy and 1.49 % of false-alarm rate.

Simulation of Deformable Objects using GLSL 4.3

  • Sung, Nak-Jun;Hong, Min;Lee, Seung-Hyun;Choi, Yoo-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.4120-4132
    • /
    • 2017
  • In this research, we implement a deformable object simulation system using OpenGL's shader language, GLSL4.3. Deformable object simulation is implemented by using volumetric mass-spring system suitable for real-time simulation among the methods of deformable object simulation. The compute shader in GLSL 4.3 which helps to access the GPU resources, is used to parallelize the operations of existing deformable object simulation systems. The proposed system is implemented using a compute shader for parallel processing and it includes a bounding box-based collision detection solution. In general, the collision detection is one of severe computing bottlenecks in simulation of multiple deformable objects. In order to validate an efficiency of the system, we performed the experiments using the 3D volumetric objects. We compared the performance of multiple deformable object simulations between CPU and GPU to analyze the effectiveness of parallel processing using GLSL. Moreover, we measured the computation time of bounding box-based collision detection to show that collision detection can be processed in real-time. The experiments using 3D volumetric models with 10K faces showed the GPU-based parallel simulation improves performance by 98% over the CPU-based simulation, and the overall steps including collision detection and rendering could be processed in real-time frame rate of 218.11 FPS.

A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection (TadGAN 기반 시계열 이상 탐지를 활용한 전처리 프로세스 연구)

  • Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.459-471
    • /
    • 2022
  • Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.