• 제목/요약/키워드: Detection techniques

검색결과 2,648건 처리시간 0.027초

Techniques for Improving Host-based Anomaly Detection Performance using Attack Event Types and Occurrence Frequencies

  • Juyeon Lee;Daeseon Choi;Seung-Hyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.89-101
    • /
    • 2023
  • 사이버 공격으로 인한 국가, 기업 등의 피해를 막기 위해 공격자의 접근을 사전에 감지하는 이상 탐지 기술이 꾸준히 연구되어왔다. 외부 혹은 내부에서 침입하는 공격들을 즉각적으로 막기 위해 실행시간의 감축과 오탐지 감소는 필수불가결하다. 본 연구에서는 공격 이벤트의 유형과 빈도가 이상 탐지 정탐률 향상 및 오탐률 감소에 영향을 미칠 것으로 가설을 세우고, 검증을 위해 Los Alamos National Laboratory의 2015년 로그인 로그 데이터셋을 사용하였다. 전처리 된 데이터를 대표적인 이상행위 탐지 알고리즘에 적용한 결과, 공격 이벤트 유형과 빈도를 동시에 적용한 특성을 사용하는 것이 이상행위 탐지의 오탐률과 수행시간을 절감하는데 매우 효과적임을 확인하였다.

고저항 지락사고 검출을 위한 신호처리 방법에 관한 연구 (A Study On The Methods Of Signal Processing For High Impedance Fault Detection)

  • 이성환;우천희;강신준;우광방;이진;김상철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.156-158
    • /
    • 1993
  • This paper presents several techniques of power spectrum estimation for high impedance fault detection. High impedance faults are those faults with current too low to be reliably cleared by conventional overcurrent protection. So power spectrum estimation is required. AR and MA techniques require optimal order for good performance of power spectrum estimation because these techniques are unstable for order selection. ARMA and Extended techniches are stable for order selection and have very sharp response. So ARMA and Extended Prony techniques are suitable for our purpose.

  • PDF

자유비행 충돌회피 알고리즘 비교분석 (Comparative Analysis of Free flight Conflict Detection and Resolution Algorithms)

  • 이대용;강자영
    • 한국항공운항학회지
    • /
    • 제19권4호
    • /
    • pp.83-90
    • /
    • 2011
  • The evaluation of Conflict detection and Resolution Algorithms require the use of analytical that describe encounter flight safety and the costs and benefits of optimization maneuver. A number of such algorithms have been applied in the past to the free flight. Each algorithm has benefits and limitations, and flight safety may be facilitated by combining the best features of various techniques. This paper studied a summary of conflict detection and resolution algorithm approaches. Algorithm techniques are categorized and the fundamental assumptions, capabilities, and limitations of each approach are described. The Algorithms are evaluated and compared based on their applicability to free flight airspace conflict situations.

유도전동기를 위한 관측기 기반의 고장 감지 및 분리 기법 설계 (Design of Observer-Based Fault Detection and Isolation techniques for Induction Motors)

  • 한병조;박기광;구경완;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.77-79
    • /
    • 2009
  • Nonlinear system fault detection and isolation of this paper is about the failure of unknown function approximation using neural network for fault detection and isolation techniques of induction motors were applied. observer-based fault signal residual value was used. Induction motor using the speed controller of the backstepping controller. Proposed fault detection and isolation to prove the performance of the simulation was applied to and the actual system.

  • PDF

Hybrid Fault Detection and Isolation Techniques for Aircraft Inertial Measurement Sensors

  • Kim, Seung-Keun;Jung, In-Sung;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.73-83
    • /
    • 2006
  • In this paper, a redundancy management system for aircraft is studied, and fault detection and isolation algorithms of inertial sensor system are proposed. Contrary to the conventional aircraft systems, UAV system cannot allow triple or quadruple hardware redundancy due to the limitations on space and weight. In the UAV system with dual sensors, it is very difficult to identify the faulty sensor. Also, conventional fault detection and isolation (FDI) method cannot isolate multiple faults in a triple redundancy system. In this paper, two FDI techniques are proposed. First, hardware based FDI technique is proposed, which combines a parity equation approach with a wavelet based technique. Second, analytic FDI technique based on the Kalman filter is proposed, which is a model-based FDI method utilizing the threshold value and the confirmation time. To provide the reference value for detecting the fault, residuals are calculated using the extended Kalman filter. To verify the effectiveness of the proposed FDI methods, numerical simulations are performed.

피치 검출을 위한 스펙트럼 평탄화 기법 (Flattening Techniques for Pitch Detection)

  • 김종국;조왕래;배명진
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.381-384
    • /
    • 2002
  • In speech signal processing, it Is very important to detect the pitch exactly in speech recognition, synthesis and analysis. but, it is very difficult to pitch detection from speech signal because of formant and transition amplitude affect. therefore, in this paper, we proposed a pitch detection using the spectrum flattening techniques. Spectrum flattening is to eliminate the formant and transition amplitude affect. In time domain, positive center clipping is process in order to emphasize pitch period with a glottal component of removed vocal tract characteristic. And rough formant envelope is computed through peak-fitting spectrum of original speech signal in frequency domain. As a results, well get the flattened harmonics waveform with the algebra difference between spectrum of original speech signal and smoothed formant envelope. After all, we obtain residual signal which is removed vocal tract element The performance was compared with LPC and Cepstrum, ACF 0wing to this algorithm, we have obtained the pitch information improved the accuracy of pitch detection and gross error rate is reduced in voice speech region and in transition region of changing the phoneme.

  • PDF

Studies on the Influence of Various factors in Ultrasonic Flaw Detection in Ferrite Steel Butt Weld Joints

  • Baby, Sony;Balasubramanian, T.;Pardikar, R.J.
    • 비파괴검사학회지
    • /
    • 제23권3호
    • /
    • pp.270-279
    • /
    • 2003
  • Parametric studies have been conducted into the variability of the factors affecting the ultrasonic testing applied to weldments. The influence of ultrasonic equipment, transducer parameters, test technique, job parameters, defect type and characteristics on reliability far defect detection and sizing was investigated by experimentation. The investigation was able to build up substantial bank of information on the reliability of manual ultrasonic method for testing weldments. The major findings of the study separate into two parts, one dealing with correlation between ultrasonic techniques, equipment and defect parameters and inspection performance effectiveness and other with human factors. Defect detection abilities are dependent on the training, experience and proficiency of the UT operators, the equipment used, the effectiveness of procedures and techniques.

Application of Change Detection Techniques Using KOMPSAT-1 EOC Images

  • Kim, Youn-Soo;Lee, Kwang-Jae
    • 대한원격탐사학회지
    • /
    • 제19권3호
    • /
    • pp.263-269
    • /
    • 2003
  • This research examined the capabilities of KOMPSAT-1 EOC images for the application of urban environment, including the urban changes of the study areas. This research is constructed in three stages: Firstly, for the application of change detection techniques, which utilizes multi-temporal remotely sensed data, the data normalization process is carried out. Secondly, the change detection method is applied for the systematic monitoring of land-use changes. Lastly, using the results of the previous stages, the land-use map is updated. Consequently, the patterns of land-use changes are monitored by the proposed scheme. In this research, using the multi-temporal KOMPSAT-1 EOC images and land-use maps, monitoring of urban growth was carried out with the application of land-use changes, and the potential and scope of the application of the EOC images were also examined.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

알려지지 않은 위협 탐지를 위한 CBA와 OCSVM 기반 하이브리드 침입 탐지 시스템 (A hybrid intrusion detection system based on CBA and OCSVM for unknown threat detection)

  • 신건윤;김동욱;윤지영;김상수;한명묵
    • 인터넷정보학회논문지
    • /
    • 제22권3호
    • /
    • pp.27-35
    • /
    • 2021
  • 인터넷이 발달함에 따라, IoT, 클라우드 등과 같은 다양한 IT 기술들이 개발되었고, 이러한 기술들을 사용하여 국가와 여러 기업들에서는 다양한 시스템을 구축하였다. 해당 시스템들은 방대한 양의 데이터들을 생성하고, 공유하기 때문에 시스템에 들어있는 중요한 데이터들을 보호하기 위해 위협을 탐지할 수 있는 다양한 시스템이 필요하였으며, 이에 대한 연구가 현재까지 활발히 진행되고 있다. 대표적인 기술로 이상 탐지와 오용 탐지를 들 수 있으며, 해당 기술들은 기존에 알려진 위협이나 정상과는 다른 행동을 보이는 위협들을 탐지한다. 하지만 IT 기술이 발전함에 따라 시스템을 위협하는 기술들도 점차 발전되고 있으며, 이러한 탐지 방법들을 피해서 위협을 가한다. 지능형 지속 위협(Advanced Persistent Threat : APT)은 국가 또는 기업의 시스템을 공격하여 중요 정보 탈취 및 시스템 다운 등의 공격을 수행하며, 이러한 공격에는 기존에 알려지지 않았던 악성코드 및 공격 기술들을 적용한 위협이 존재한다. 따라서 본 논문에서는 알려지지 않은 위협을 탐지하기 위한 이상 탐지와 오용 탐지를 결합한 하이브리드 침입 탐지 시스템을 제안한다. 두 가지 탐지 기술을 적용하여 알려진 위협과 알려지지 않은 위협에 대한 탐지가 가능하게 하였으며, 기계학습을 적용함으로써 보다 정확한 위협 탐지가 가능하게 된다. 오용 탐지에서는 Classification based on Association Rule(CBA)를 적용하여 알려진 위협에 대한 규칙을 생성하였으며, 이상 탐지에서는 One Class SVM(OCSVM)을 사용하여 알려지지 않은 위협을 탐지하였다. 실험 결과, 알려지지 않은 위협 탐지 정확도는 약 94%로 나타난 것을 확인하였고, 하이브리드 침입 탐지를 통해 알려지지 않은 위협을 탐지 할 수 있는 것을 확인하였다.