• Title/Summary/Keyword: Detection rate

Search Result 4,593, Processing Time 0.041 seconds

Development of Automatic Incident Detection Algorithm Using Image Based Detectors (영상기반의 자동 유고검지 모형 개발)

  • 백용현;오영태
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.7-17
    • /
    • 2001
  • The purpose of this paper is to develop automatic incident detection algorithm using image based detector in freeway management system. This algorithm was developed by using neutral network for high speed roadway and by using speed and occupancy variable for low speed roadway. The image detector system with the developed automatic incident detection algorithm can detect multi-lane as well as several detect areas for each lane. To evaluate this system, field tests to measure the detecting rate of incidents were performed with other systems which have APID and DES algorithm at high speed roadway(freeway) and low speed roadway(national arterial). As the results of field test, it found that the detect rate of this system was highest rate comparing to other two systems.

  • PDF

Hybrid Fuzzy Adaptive Wiener Filtering with Optimization for Intrusion Detection

  • Sujendran, Revathi;Arunachalam, Malathi
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.502-511
    • /
    • 2015
  • Intrusion detection plays a key role in detecting attacks over networks, and due to the increasing usage of Internet services, several security threats arise. Though an intrusion detection system (IDS) detects attacks efficiently, it also generates a large number of false alerts, which makes it difficult for a system administrator to identify attacks. This paper proposes automatic fuzzy rule generation combined with a Wiener filter to identify attacks. Further, to optimize the results, simplified swarm optimization is used. After training a large dataset, various fuzzy rules are generated automatically for testing, and a Wiener filter is used to filter out attacks that act as noisy data, which improves the accuracy of the detection. By combining automatic fuzzy rule generation with a Wiener filter, an IDS can handle intrusion detection more efficiently. Experimental results, which are based on collected live network data, are discussed and show that the proposed method provides a competitively high detection rate and a reduced false alarm rate in comparison with other existing machine learning techniques.

Emergency Monitoring System Based on a Newly-Developed Fall Detection Algorithm

  • Yi, Yun Jae;Yu, Yun Seop
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.199-206
    • /
    • 2013
  • An emergency monitoring system for the elderly, which uses acceleration data measured with an accelerometer, angular velocity data measured with a gyroscope, and heart rate measured with an electrocardiogram, is proposed. The proposed fall detection algorithm uses multiple parameter combinations in which all parameters, calculated using tri-axial accelerations and bi-axial angular velocities, are above a certain threshold within a time period. Further, we propose an emergency detection algorithm that monitors the movements of the fallen elderly person, after a fall is detected. The results show that the proposed algorithms can distinguish various types of falls from activities of daily living with 100% sensitivity and 98.75% specificity. In addition, when falls are detected, the emergency detection rate is 100%. This suggests that the presented fall and emergency detection method provides an effective automatic fall detection and emergency alarm system. The proposed algorithms are simple enough to be implemented into an embedded system such as 8051-based microcontroller with 128 kbyte ROM.

Development of wearable devices and mobile apps for fall detection and health management

  • Tae-Seung Ko;Byeong-Joo Kim;Jeong-Woo Jwa
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.370-375
    • /
    • 2023
  • As we enter a super-aged society, studies are being conducted to reduce complications and deaths caused by falls in elderly adults. Research is being conducted on interventions for preventing falls in the elderly, wearable devices for detecting falls, and methods for improving the performance of fall detection algorithms. Wearable devices for detecting falls of the elderly generally use gyro sensors. In addition, to improve the performance of the fall detection algorithm, an artificial intelligence algorithm is applied to the x, y, z coordinate data collected from the gyro sensor. In this paper, we develop a wearable device that uses a gyro sensor, body temperature, and heart rate sensor for health management as well as fall detection for the elderly. In addition, we develop a fall detection and health management system that works with wearable devices and a guardian's mobile app to improve the performance of the fall detection algorithm and provide health information to guardians.

A Time-Varying Modified MMSE Detector for Multirate CDMA Signals in Fast Rayleigh Fading Channels

  • Jeong, Kil-Soo;Yokoyama, Mitsuo;Uehara, Hideyuki
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.143-152
    • /
    • 2007
  • In this paper, we propose a time-varying modified minimum mean-squared error (MMSE) detector for the detection of higher data rate signals in a multirate asynchronous code-division multiple-access (CDMA) system which is signaled in a fast Rayleigh fading channel. The interference viewed by a higher data rate symbol will be periodic due to the presence of a lower data rate symbol which spans multiple higher data rate symbols. The detection is carried out on the basis of a modified MMSE criterion which incorporates differential detection and the ratio of channel coefficients in two consecutive observation intervals inherently compensating the fast variation of the channel due to fading. The numerical results obtained by the MMSE detector with time-varying detection show around 3 dB (M=2) and 6 dB (M=4) performance improvement at a BER of $10^{-3}$ in the AWGN channel, while introducing more computational complexity than the MMSE detector without time-varying detection. At a higher $E_b/N_0$, the proposed scheme can achieve a BER of approximately $10^{-3}$ in the presence of fast channel variation which is an improvement over other schemes.

  • PDF

Closely Spaced Target Detection using Intensity Sorting-based Context Awareness

  • Kim, Sungho;Won, Jin-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1839-1845
    • /
    • 2016
  • Detecting remote targets is important to active protection system (APS) or infrared search and track (IRST) applications. In normal situation, the well-known constant false alarm rate (CFAR) detector works properly. However, decoys in APS or closely spaced targets in IRST degrade the detection capability by increasing background noise level in the CFAR detector. This paper presents a context aware CFAR detector by the intensity sorting and selection of background region to reduce the effect of neighboring targets that lead to incorrect estimation of background statistics. The existence of neighboring targets can be recognized by intensity sorting where neighboring targets usually show highest ranks. The proposed background statistics (mean, standard deviation) estimation method from median local pixels can be aware of the background context and reduce the effects of the neighboring targets, which increase the signal-to-clutter ratio. The experimental results on the synthetic APS sequence, real adjacent target sequence, and remote pedestrian sequence validated that the proposed method produced an enhanced detection rate with the same false alarm rate compared with the hysteresis-CFAR (H-CFAR) detection.

A Study on Fire Detection in Ship Engine Rooms Using Convolutional Neural Network (합성곱 신경망을 이용한 선박 기관실에서의 화재 검출에 관한 연구)

  • Park, Kyung-Min;Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.476-481
    • /
    • 2019
  • Early detection of fire is an important measure for minimizing the loss of life and property damage. However, fire and smoke need to be simultaneously detected. In this context, numerous studies have been conducted on image-based fire detection. Conventional fire detection methods are compute-intensive and comprise several algorithms for extracting the flame and smoke characteristics. Hence, deep learning algorithms and convolution neural networks can be alternatively employed for fire detection. In this study, recorded image data of fire in a ship engine room were analyzed. The flame and smoke characteristics were extracted from the outer box, and the YOLO (You Only Look Once) convolutional neural network algorithm was subsequently employed for learning and testing. Experimental results were evaluated with respect to three attributes, namely detection rate, error rate, and accuracy. The respective values of detection rate, error rate, and accuracy are found to be 0.994, 0.011, and 0.998 for the flame, 0.978, 0.021, and 0.978 for the smoke, and the calculation time is found to be 0.009 s.

A Study on Flame Detection using Faster R-CNN and Image Augmentation Techniques (Faster R-CNN과 이미지 오그멘테이션 기법을 이용한 화염감지에 관한 연구)

  • Kim, Jae-Jung;Ryu, Jin-Kyu;Kwak, Dong-Kurl;Byun, Sun-Joon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1079-1087
    • /
    • 2018
  • Recently, computer vision field based deep learning artificial intelligence has become a hot topic among various image analysis boundaries. In this study, flames are detected in fire images using the Faster R-CNN algorithm, which is used to detect objects within the image, among various image recognition algorithms based on deep learning. In order to improve fire detection accuracy through a small amount of data sets in the learning process, we use image augmentation techniques, and learn image augmentation by dividing into 6 types and compare accuracy, precision and detection rate. As a result, the detection rate increases as the type of image augmentation increases. However, as with the general accuracy and detection rate of other object detection models, the false detection rate is also increased from 10% to 30%.

Malicious Code Detection using the Effective Preprocessing Method Based on Native API (Native API 의 효과적인 전처리 방법을 이용한 악성 코드 탐지 방법에 관한 연구)

  • Bae, Seong-Jae;Cho, Jae-Ik;Shon, Tae-Shik;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.785-796
    • /
    • 2012
  • In this paper, we propose an effective Behavior-based detection technique using the frequency of system calls to detect malicious code, when the number of training data is fewer than the number of properties on system calls. In this study, we collect the Native APIs which are Windows kernel data generated by running program code. Then we adopt the normalized freqeuncy of Native APIs as the basic properties. In addition, the basic properties are transformed to new properties by GLDA(Generalized Linear Discriminant Analysis) that is an effective method to discriminate between malicious code and normal code, although the number of training data is fewer than the number of properties. To detect the malicious code, kNN(k-Nearest Neighbor) classification, one of the bayesian classification technique, was used in this paper. We compared the proposed detection method with the other methods on collected Native APIs to verify efficiency of proposed method. It is presented that proposed detection method has a lower false positive rate than other methods on the threshold value when detection rate is 100%.

A Comparative Study on Artificial in Intelligence Model Performance between Image and Video Recognition in the Fire Detection Area (화재 탐지 영역의 이미지와 동영상 인식 사이 인공지능 모델 성능 비교 연구)

  • Jeong Rok Lee;Dae Woong Lee;Sae Hyun Jeong;Sang Jeong
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.968-975
    • /
    • 2023
  • Purpose: We would like to confirm that the false positive rate of flames/smoke is high when detecting fires. Propose a method and dataset to recognize and classify fire situations to reduce the false detection rate. Method: Using the video as learning data, the characteristics of the fire situation were extracted and applied to the classification model. For evaluation, the model performance of Yolov8 and Slowfast were compared and analyzed using the fire dataset conducted by the National Information Society Agency (NIA). Result: YOLO's detection performance varies sensitively depending on the influence of the background, and it was unable to properly detect fires even when the fire scale was too large or too small. Since SlowFast learns the time axis of the video, we confirmed that detects fire excellently even in situations where the shape of an atypical object cannot be clearly inferred because the surrounding area is blurry or bright. Conclusion: It was confirmed that the fire detection rate was more appropriate when using a video-based artificial intelligence detection model rather than using image data.