• Title/Summary/Keyword: Detection of error data

Search Result 732, Processing Time 0.029 seconds

A Novel Error Detection Algorithm Based on the Structural Pattern of LZ78-Compression Data (LZ78 압축 데이터의 구조적 패턴에 기반한 새로운 오류 검출 알고리즘)

  • Gong, Myongsik;Kwon, Beom;Kim, Jinwoo;Lee, Sanghoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1356-1363
    • /
    • 2016
  • In this paper, we propose a novel error detection algorithm for LZ78-compressed data. The conventional error detection method adds a certain number of parity bits in transmission, and the receiver checks the number of bits representing '1' to detect the errors. These conventional methods use additional bits resulting in increased redundancy in the compressed data which results in reduced effectiveness of the final compressed data. In this paper, we propose error detection algorithm using the structural properties of LZ78 compression without using additional bits in the compressed data. The simulation results show that the error detection ratio of the proposed algorithm is about 1.3 times better for error detection than conventional algorithms.

Development of a Real-time Error-detection System;The Case study of an Electronic Jacquard

  • Huh, Jae-Yeong;Seo, Chang-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2588-2593
    • /
    • 2003
  • Any system has the possibility of an error occurrence. Even if trivial errors were occurred, the original system would be fatally affected by the occurring errors. Accordingly, the error detection must be demanded. In this paper, we developed a real-time error detection system would be able to apply to an electronic Jacquard system. A Jacquard is a machine, which controls warps while weaving textiles, for manufacturing patterned cloth. There are two types of mechanical and electronic Jacquard. An electronic Jacquard is better than a mechanical Jacquard in view of the productivity and realizability for weaving various cloths. Recent weaving industry is growing up increasingly due to the electronic Jacquard. But, the problem of wrong weaving from error data exists in the electronic Jacquard. In this research, a real-time error detection system for an electronic Jacquard is developed for detecting errors in an electronic Jacquard in real-time. The real-time system is constructed using PC-based embedded system architecture. The system detects the occurring errors in real-time by storing 1344 data transferred in serial from an electronic Jacquard into memory, and then by comparing synchronously 1344 data stored into memory with 1344 data in a design file before the next data would be transferred to the Jacquard for weaving. The information of detected errors are monitored to the screen and stored into a file in real-time as the outputs of the system. In this research, we solve the problem of wrong weaving through checking the weaving data and detecting the occurred errors of an electronic Jacquard in real-time.

  • PDF

A study on detection of composite errors and high precision cutting method by numerical control of two-dimensional circular interpolation in machining centers (Machining center에서 2차원 원호보간의 복합오차 검출 및 수치제어에 의한 고정밀도 가공방법에 관한 연구)

  • Kim, J.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.117-126
    • /
    • 1994
  • This paper describes an application step of a $R^{-{\theta}}$ method which measures circular movements in machining centers. The detection of composite errors of circular movements and a high precision cutting method in machining centers were investigated by the analysis of data measured by $R^{\theta }$method which can detect the rotating angle and is applicable to variable measuring radius. When the error by squareness error and unbalance of position-loop-gain were mixed, the detection method of each error was proposed. Although the errors by squarenss error and backlash compensation were mixed, the errors by squareness error be detected. If the errors by unbalance of position-loop-gain and backlash compensation were mixed, the errors by unbalance of position-loop-gain could not detected. A high precision cutting mehod, which uses the NC program compensated by using feed-back data from error measured by the $R^{\theta }$method, was proposed.

  • PDF

Design and Implementation of e2eECC for Automotive On-Chip Bus Data Integrity (차량용 온칩 버스의 데이터 무결성을 위한 종단간 에러 정정 코드(e2eECC)의 설계 및 구현)

  • Eunbae Gil;Chan Park;Juho Kim;Joonho Chung;Joosock Lee;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.116-122
    • /
    • 2024
  • AMBA AHB-Lite bus is widely used in on-chip bus protocol for low-power and cost-effective SoC. However, it lacks built-in error detection and correction for end-to-end data integrity. This can lead to data corruption and system instability, particularly in harsh environments like automotive applications. To mitigate this problem, this paper proposes the application of SEC-DED (Single Error Correction-Double Error Detection) to AMBA AHB-Lite bus. It aims not only to detect errors in real-time but also to correct them, thereby enhancing end-to-end data integrity. Simulation results demonstrate real-time error detection and correction when errors occur, which bolsters end-to-end data integrity of automotive on-chip bus.

Obstacle Position Detection on an Inclined Plane Using Randomized Hough Transform and Corner Detection (랜덤하프변환과 코너추출을 이용한 경사면의 장애물 위치 탐색)

  • Hwang, Sun-Min;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.419-428
    • /
    • 2011
  • This paper suggests a judgement method for an inclined plane before entrance of it and the detection of obstacle position. Main idea is started from the assumption that obstacle is always on the bottom plane, and corner appears at this position. The process to detect the obstacle consists of three steps. First the 3D data using stereo matching is acquired to detect an obstacle. Second a bottom plane is extracted by using limit condition. Last the obstacle position is found by using Harris corner detection. Obstacle position detection on an inclined plane was verified by outdoor and indoor experiment. In error analysis, it is confirmed that an average error of obstacle detection in outdoor was larger than the error in indoor but the error are within about 0.030 m. This method will be applied to unmanned vehicles to navigate under various environment.

A Study on Error Detection Algorithm of COD Measurement Machine

  • Choi, Hyun-Seok;Song, Gyu-Moon;Kim, Tae-Yoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.847-857
    • /
    • 2007
  • This paper provides a statistical algorithm which detects COD (chemical oxygen demand) measurement machine error on real-time. For this we propose to use regression model fitting and check its validity against the current observations. The main idea is that the normal regression relation between COD measurement and other parameters inside the machine will be violated when the machine is out of order.

  • PDF

Improved Error Detection Scheme Using Data Hiding in Motion Vector for H.264/AVC (움직임 벡터의 정보 숨김을 이용한 H.264/AVC의 향상된 오류 검출 방법)

  • Ko, Man-Geun;Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.20-29
    • /
    • 2013
  • The compression of video data is intended for real-time transmission of band-limited channels. Compressed video bit-streams are very sensitive to transmission error. If we lose packets or receive them with errors during transmission, not only the current frame will be corrupted, but also the error will propagate to succeeding frames due to the spatio-temporal predictive coding structure of sequences. Error detection and concealment is a good approach to reduce the bad influence on the reconstructed visual quality. To increase concealment efficiency, we need to get some more accurate error detection algorithm. In this paper, We hide specific data into the motion vector difference of each macro-block, which is obtained from the procedure of inter prediction mode in H.264/AVC. Then, the location of errors can be detected easily by checking transmitted specific data in decoder. We verified that the proposed algorithm generates good performances in PSNR and subjective visual quality through the computer simulation by H.324M mobile simulation tool.

Robust Process Fault Detection System Under Asynchronous Time Series Data Situation (비동기 설비 신호 상황에서의 강건한 공정 이상 감지 시스템 연구)

  • Ko, Jong-Myoung;Choi, Ja-Young;Kim, Chang-Ouk;Sun, Sang-Joon;Lee, Seung-Jun
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.288-297
    • /
    • 2007
  • Success of semiconductor/LCD industry depends on its yield and quality of product. For the purpose, FDC (Fault Detection and Classification) system is used to diagnose fault state in main manufacturing processes by monitoring time series data collected by equipment sensors which represent various conditions of the equipment. The data set is segmented at the start and end of each product lot processing by a trigger event module. However, in practice, segmented sensor data usually have the features of data asynchronization such as different start points, end points, and data lengths. Due to the asynchronization problem, false alarm (type I error) and missed alarm (type II error) occur frequently. In this paper, we propose a robust process fault detection system by integrating a process event detection method and a similarity measuring method based on dynamic time warping algorithm. An experiment shows that the proposed system is able to recognize abnormal condition correctly under the asynchronous data situation.

Error Detection and Concealment of Transmission Error Using Watermark (워터마크를 이용한 전송 채널 에러의 검출 및 은닉)

  • 박운기;전병우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.262-271
    • /
    • 2004
  • There are channel errors when video data are transmitted between encoder and decoder. These channel errors would make decoded image incorrect, so it is very important to detect and recover channel errors. This paper proposes a method of error detection and recovery by hiding specific information into video bitstream using fragile watermark and checking it later. The proposed method requires no additional bits into compressed bitstream since it embeds a user-specific data pattern in the least significant bits of LEVELs in VLC codewords. The decoder can extract the information to check whether the received bitstream has an error or not. We also propose to use this method to embed essential data such as motion vectors that can be used for error recovery. The proposed method can detect corrupted MBs that usually escape the conventional syntax-based error detection scheme. This proposed method is quite simple and of low complexity. So the method can be applied to multimedia communication system in low bitrate wireless channel.

The estimation of first order derivative phase error using iterative algorithm in SAR imaging system (SAR(Synthetic Aperture Radar)Imaging 시스템에서 제안 알고리즘의 반복수행을 통한 위상오차의 기울기 추정기법 연구)

  • 김형주;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.505-508
    • /
    • 2000
  • The success of target reconstruction in SAR(Synthetic Aperture Radar) imaging system is greatly dependent on the coherent detection. Primary causes of incoherent detection are uncompensated target or sensor motion, random turbulence in propagation media, wrong path in radar platform, and etc. And these appear as multiplicative phase error to the echoed signal, which consequently, causes fatal degradations such as fading or dislocation of target image. In this paper, we present iterative phase error estimation scheme which uses echoed data in all temporal frequencies. We started with analyzing wave equation for one point target and extend to overall echoed data from the target scene - The two wave equations governing the SAR signal at two temporal frequencies of the radar signal are combined to derive a method to reconstruct the complex phase error function. Eventually, this operation attains phase error correction algorithm from the total received SAR signal. We verify the success of the proposed algorithm by applying it to the simulated spotlight-mode SAR data.

  • PDF