• 제목/요약/키워드: Detection of Defect

검색결과 717건 처리시간 0.021초

다채널 진동 센서를 이용한 선박 엔진의 진동 감지 및 고장 분류 시스템 (Defect Detection and Defect Classification System for Ship Engine using Multi-Channel Vibration Sensor)

  • 이양민;이광용;배승현;장휘;이재기
    • 정보처리학회논문지A
    • /
    • 제17A권2호
    • /
    • pp.81-92
    • /
    • 2010
  • 진동 정보를 통해 기계 설비의 상태나 고장 유무를 판단하는 연구들이 다수 진행 중에 있는데, 대부분의 연구에서는 설비에 대한 진동을 모니터링하거나 고장 유무를 판별하여 사용자에게 알리는 수준이다. 본 논문에서는 진동에 의한 고장 진단과 판별을 보다 정교하게 수행하는 선박 엔진의 고장 감지 기법과 시스템을 제안하였다. 일차적으로 이중적 진동 정보 판별 기법을 적용하여 진동 정보를 확인한 다음에 고장 유무를 검사한다. 만일 고장이 발생한 경우에는 진동 정보의 오류 부분만을 이용하여 고장 진동 파형에 대한 오차 범위를 기준으로 어떤 유형의 고장인지를 판별할 수 있는 기법을 적용하였다. 또한 선박의 진동 경향 분석과 엔진 안전 보존을 목적으로 진동 정보를 데이터베이스에 저장하고 추적할 수 있도록 시스템을 구현하였다. 제안 시스템을 선박 엔진의 고장 판별 유무와 고장 진동 파형 감별 인자에 대해 실험을 수행한 결과 고장 유무 판별은 약 100% 정확성을 가졌고 고장 진동 파형의 유형 인식에서는 약 96% 정확성을 가졌다.

A fast defect detection method for PCBA based on YOLOv7

  • Shugang Liu;Jialong Chen;Qiangguo Yu;Jie Zhan;Linan Duan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2199-2213
    • /
    • 2024
  • To enhance the quality of defect detection for Printed Circuit Board Assembly (PCBA) during electronic product manufacturing, this study primarily focuses on optimizing the YOLOv7-based method for PCBA defect detection. In this method, the Mish, a smoother function, replaces the Leaky ReLU activation function of YOLOv7, effectively expanding the network's information processing capabilities. Concurrently, a Squeeze-and-Excitation attention mechanism (SEAM) has been integrated into the head of the model, significantly augmenting the precision of small target defect detection. Additionally, considering angular loss, compared to the CIoU loss function in YOLOv7, the SIoU loss function in the paper enhances robustness and training speed and optimizes inference accuracy. In terms of data preprocessing, this study has devised a brightness adjustment data enhancement technique based on split-filtering to enrich the dataset while minimizing the impact of noise and lighting on images. The experimental results under identical training conditions demonstrate that our model exhibits a 9.9% increase in mAP value and an FPS increase to 164 compared to the YOLOv7. These indicate that the method proposed has a superior performance in PCBA defect detection and has a specific application value.

CNN 기반 딥러닝을 이용한 인공지지체의 외형 변형 불량 검출 모델에 관한 연구 (A Study on Shape Warpage Defect Detecion Model of Scaffold Using Deep Learning Based CNN)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.99-103
    • /
    • 2021
  • Warpage defect detecting of scaffold is very important in biosensor production. Because warpaged scaffold cause problem in cell culture. Currently, there is no detection equipment to warpaged scaffold. In this paper, we produced detection model for shape warpage detection using deep learning based CNN. We confirmed the shape of the scaffold that is widely used in cell culture. We produced scaffold specimens, which are widely used in biosensor fabrications. Then, the scaffold specimens were photographed to collect image data necessary for model manufacturing. We produced the detecting model of scaffold warpage defect using Densenet among CNN models. We evaluated the accuracy of the defect detection model with mAP, which evaluates the detection accuracy of deep learning. As a result of model evaluating, it was confirmed that the defect detection accuracy of the scaffold was more than 95%.

An Improved Defect Detection Algorithm of Jean Fabric Based on Optimized Gabor Filter

  • Ma, Shuangbao;Liu, Wen;You, Changli;Jia, Shulin;Wu, Yurong
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1008-1014
    • /
    • 2020
  • Aiming at the defect detection quality of denim fabric, this paper designs an improved algorithm based on the optimized Gabor filter. Firstly, we propose an improved defect detection algorithm of jean fabric based on the maximum two-dimensional image entropy and the loss evaluation function. Secondly, 24 Gabor filter banks with 4 scales and 6 directions are created and the optimal filter is selected from the filter banks by the one-dimensional image entropy algorithm and the two-dimensional image entropy algorithm respectively. Thirdly, these two optimized Gabor filters are compared to realize the common defect detection of denim fabric, such as normal texture, miss of weft, hole and oil stain. The results show that the improved algorithm has better detection effect on common defects of denim fabrics and the average detection rate is more than 91.25%.

Current Trend and Direction of Deep Learning Method to Railroad Defect Detection and Inspection

  • Han, Seokmin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권3호
    • /
    • pp.149-154
    • /
    • 2022
  • In recent years, the application of deep learning method to computer vision has shown to achieve great performances. Thus, many research projects have also applied deep learning technology to railroad defect detection. In this paper, we have reviewed the researches that applied computer vision based deep learning method to railroad defect detection and inspection, and have discussed the current trend and the direction of those researches. Many research projects were targeted to operate automatically without visual inspection of human and to work in real-time. Therefore, methods to speed up the computation were also investigated. The reduction of the number of learning parameters was considered important to improve computation efficiency. In addition to computation speed issue, the problem of annotation was also discussed in some research projects. To alleviate the problem of time consuming annotation, some kinds of automatic segmentation of the railroad defect or self-supervised methods have been suggested.

수리 형태론을 이용한 texture 영상의 방향성 결함검출 (A directional defect detection in texture image using mathematical morphology)

  • 김한균;윤정민;오주환;최태영
    • 전자공학회논문지B
    • /
    • 제33B권4호
    • /
    • pp.141-147
    • /
    • 1996
  • In this paper an improved morphological algorithm for directional defect detection is proposed, where the defect is parallel to the texture image. The algorithm is based on obtaining the background image while removing the defect by comparing every directional morphological result with max or min except that of defect. The defect can of defect and the background image. For a computer simulation, it is shown that the proposed method has better performance than the conventional algorithm.

  • PDF

Software Key Node Recognition Algorithm for Defect Detection based on Node Expansion Degree and Improved K-shell Position

  • Wanchang Jiang;Zhipeng Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1817-1839
    • /
    • 2024
  • To solve the problem of insufficient recognition of key nodes in the existing software defect detection process, this paper proposes a key node recognition algorithm based on node expansion degree and improved K-shell position, shortened as SDD_KNR. Firstly, the calculation formula of node expansion degree is designed to improve the degree that can measure the local defect propagation capability of nodes in the software network. Secondly, the concept of improved K-shell position of node is proposed to obtain the improved K-shell position of each node. Finally, the measurement of node defect propagation capability is defined, and the key node recognition algorithm is designed to identify the key function nodes with large defect impact range in the process of software defect detection. Using real software systems such as Nano, Cflow and Tar to design three sets of experiments. The corresponding directed weighted software function invoke networks are built to simulate intentional attack and defect source infection. The proposed SDD_KNR algorithm is compared with the BC algorithm, K-shell algorithm, KNMWSG algorithm and NMNC algorithm. The changing trend of network efficiency and the strength of node propagation force are analyzed to verify the effectiveness of the proposed SDD_KNR algorithm.

제품 결함 탐지에서 데이터 부족 문제를 극복하기 위한 샴 신경망의 활용 (Siamese Neural Networks to Overcome the Insufficient Data Problems in Product Defect Detection)

  • 신강현;진교홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.108-111
    • /
    • 2022
  • 제품의 결함 탐지를 위한 머신 비전 시스템에 딥러닝을 적용하기 위해서는 다양한 결함 사례에 대한 방대한 학습 데이터가 필요하다. 하지만 실제 제조 산업에서는 결함의 종류에 따른 데이터 불균형이 생기기 때문에 결함 사례를 일반화할 수 있을 만큼의 제품 이미지를 수집하기 위해서는 많은 시간이 소요된다. 본 논문에서는 적은 데이터로도 학습이 가능한 샴 신경망을 제품 결함 탐지에 적용하고, 제품 결함 이미지 데이터의 속성을 고려하여 이미지 쌍 구성법과 대조 손실 함수를 수정하였다. AUC-ROC로 샴 신경망의 임베딩 성능을 간접적으로 확인한 결과, 같은 제품끼리만 쌍을 구성하고 결함이 있는 제품 간에는 쌍을 구성하였을 때, 그리고 지수 대조 손실로 학습하였을 때 좋은 임베딩 성능을 보였다.

  • PDF

Steel Surface Defect Detection using the RetinaNet Detection Model

  • Sharma, Mansi;Lim, Jong-Tae;Chae, Yi-Geun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권2호
    • /
    • pp.136-146
    • /
    • 2022
  • Some surface defects make the weak quality of steel materials. To limit these defects, we advocate a one-stage detector model RetinaNet among diverse detection algorithms in deep learning. There are several backbones in the RetinaNet model. We acknowledged two backbones, which are ResNet50 and VGG19. To validate our model, we compared and analyzed several traditional models, one-stage models like YOLO and SSD models and two-stage models like Faster-RCNN, EDDN, and Xception models, with simulations based on steel individual classes. We also performed the correlation of the time factor between one-stage and two-stage models. Comparative analysis shows that the proposed model achieves excellent results on the dataset of the Northeastern University surface defect detection dataset. We would like to work on different backbones to check the efficiency of the model for real world, increasing the datasets through augmentation and focus on improving our limitation.

볼트 홀 결함 평가용 와전류 센서 설계제작 및 특성분석 (The Design & Manufacture and Characteristic Analysis of Eddy Current Sensor for Bolt Hole Defect Evaluation)

  • 안연식;길두송;박상기
    • 동력기계공학회지
    • /
    • 제15권4호
    • /
    • pp.37-41
    • /
    • 2011
  • This paper introduces the special eddy current sensor and its characteristic for bolt hole defect evaluation in gas turbine rotor. In the past, Fluorescent penetration inspection method was used for qualitative defect evaluation in gas turbine rotor bolt hole. This method can defect the bolt hole defect but can not evaluate the defect size. Nowadays, eddy current method is used quantitative defect evaluation due to advanced sensor design technology. And eddy current method is more time and cost saving than the old method. We developed bolt shape eddy current sensor for the rotor bolt hole defect detection and evaluation. The eddy current sensor moves to the bolt hole guided by screw nut and detects the defect on the bolt hole. The bolt hole mock-up and artificial defects were made and used for the signal detection & resolution analysis of eddy current sensor. The results show that signal detection capability is enough to detect 0.2 mm depth defect. And the resolution capability is enough to differentiate 02, 0.5, 1.0 and 2.0 mm depth defect.