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Abstract 

 
To solve the problem of insufficient recognition of key nodes in the existing software defect 
detection process, this paper proposes a key node recognition algorithm based on node 
expansion degree and improved K-shell position, shortened as SDD_KNR. Firstly, the 
calculation formula of node expansion degree is designed to improve the degree that can 
measure the local defect propagation capability of nodes in the software network. Secondly, 
the concept of improved K-shell position of node is proposed to obtain the improved K-shell 
position of each node. Finally, the measurement of node defect propagation capability is 
defined, and the key node recognition algorithm is designed to identify the key function nodes 
with large defect impact range in the process of software defect detection. Using real software 
systems such as Nano, Cflow and Tar to design three sets of experiments. The corresponding 
directed weighted software function invoke networks are built to simulate intentional attack 
and defect source infection. The proposed SDD_KNR algorithm is compared with the BC 
algorithm, K-shell algorithm, KNMWSG algorithm and NMNC algorithm. The changing 
trend of network efficiency and the strength of node propagation force are analyzed to verify 
the effectiveness of the proposed SDD_KNR algorithm. 
 
 
Keywords: Software Defect Detection, Node Expansion Degree, K-shell Position, Key 
Node Recognition 
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 1. Introduction 

With the advancement of digital intelligence, software systems are becoming increasingly 
intricate, leading to a higher likelihood of software failure [1]. In the process of software 
development, it is inevitable that modules have defects [2]. Once these defects are exposed 
during the formal use of the software, they will affect the operation of the software and even 
cause the cascade collapse of the entire system [3]. Similar to the spread of infectious diseases 
in the population, the defects in the software system will spread to other modules without 
defects with the dependencies between software system modules, such as method calls and 
parameter passing, resulting in other modules cascading failures [4]. In the dynamic execution 
state of software, the destruction of a small number of key modules with defects in the software 
system will have a greater impact on the software system, and most other software defects 
only have a limited impact on the software system [5]. Therefore, if we can accurately detect 
the modules that have a greater impact on defects, and pay attention to these key modules, it 
will have important reference value for increasing the stability and reliability of software 
systems. 

Complex network analysis provides a new perspective for analyzing software systems 
[6,7]. When the software system structure is represented as a network, entities can be extracted 
from different granularities such as packages, classes, methods, and attributes as nodes, and 
the dependencies between them can be regarded as edges. Through the combination of these 
nodes and edges, a software network is constructed [8]. From a network perspective, the 
identification of critical nodes in software system defect detection begins at the class 
granularity level. With the deepening of research, scholars have observed that by considering 
the function in the software system as the fundamental unit of analysis for identifying critical 
nodes in software defect detection, it is possible to pinpoint the causes of software defects at 
a more precise level. From the perspective of local node measurement, Dong Jun et al. [9] 
utilized the typical degree centrality algorithm in complex networks to pinpoint pivotal nodes 
within the network. Wu Hongfei et al. [10] established a directed weighted software network 
model and proposed a key node identification algorithm. By considering the influence of 
neighbor nodes and secondary neighbor nodes on the node, the algorithm makes the node have 
a better distinction in the local scope of the software network. However, these algorithms 
ignore the influence of the global information of the software network on the importance of 
nodes. Wang Qian et al. [11] proposed the concept of structural entropy and utilized node 
structural entropy to assess the significance of nodes. Employing a global measurement 
approach, the algorithm discerns function nodes with diminished local significance yet 
substantial global impact within the network. Xu et al. [12] used the K-shell position of the 
node to calculate the influence value of the node in the global range of the network, and used 
the influence value of the node neighbor and the secondary neighbor node to calculate the 
comprehensive influence value of the node in the local range of the network to obtain the key 
nodes in the network. The algorithm enhances the precision with which key nodes are 
identified. Existing algorithms measure the importance of nodes from the perspective of local 
and global measurement of nodes in the network, but there are still some shortcomings: 1) The 
algorithm regards the influence of neighbor nodes and secondary neighbor nodes of nodes in 
the network as the same position; 2) The recognition of key nodes in the network is not 
enough. 

To solve the above problems, this paper proposed a key node recognition algorithm for 
software defect detection based on node expansion degree and improved K-shell position. The 
node defect propagation capability measure is defined from the perspective of node defect 
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propagation, and the key nodes in the software defect detection process are identified 
according to the measured value. Firstly, the concept of expansion degree is proposed, and the 
influence coefficient that can be dynamically adjusted is set to balance the different influence 
degrees of the out-edge neighbors and the out-edge secondary neighbors of the nodes. 
According to the influence coefficient, the expansion degree of each node is obtained, and the 
influence of the node on the local structure of the network is measured by the node expansion 
degree. Secondly, the K-shell algorithm is used to stratify the network, and the improved K-
shell position of each node is obtained. The influence of the global structure of the network is 
measured by the improved K-shell position of the node. Finally, the measurement of node 
defect propagation capability is defined, and the measurement value of node defect 
propagation capability is obtained by combining the node expansion degree with the node 
improved K-shell position. The experimental results show that in the process of simulating 
software defect detection, the proposed algorithm can better identify the key function nodes in 
the software network. 

2. Directed Weighted Software Function Invoke Network 
In this section, the dependencies among function granularity units in a software system are 
extracted dynamically. The function entity is regarded as a node in the network, and the invoke 
relationship between functions is regarded as a directed edge in the network, and the direction 
of the directed edge is consistent with the invoke relationship between the corresponding nodes. 
In addition, the degree of defect propagation between functions is regarded as the edge weight 
coefficient for the directed edge [10]. As a result, the directed weighted software function 
invoke network is built.  

Definition 2.1. Directed software function invoke network (DFIN). It is denoted by a two-
tuples ( , )DFIN V E= . { | 1, 2,..., }iV v i N= =  is the set of N nodes, where node iv  
represents the function entity numbered i  in the network, and N is the number of nodes in the 

network. ( ){ } , ,  ,  kj kj k j k jE e e v v v V v V= = ∈ ∈  is the set of directed edge, where kje  is a 

directed edge formed by a pair of ordered function nodes ( ),k jv v  in the dynamic execution of 

software, kj jke e≠ .  
And the function entity numbered k  calls the function entity numbered j ,  node kv  is the 

calling function node of kje ,  node jv  is the modulated function node of kje . In particular, if 
the directed edge set E  does not have any edge with function entity i  as the calling function 

node, then the node iv  is called a leaf function node. And the node set of all leaf function 

nodes in V  that satisfy this condition is represented as nV . 
Definition 2.2. Function call chain (FCC). In every software system, a solitary entry 

function initiates execution, sequentially invoking multiple subordinate functions until 
culminating in a leaf function that marks the sequence's termination. This ordered series of 
function invocations, encompassing both the initiating entry and the concluding leaf function, 
is collectively termed a "function call chain". Suppose the entry function node is ( )a av v V∈ , 
then a function call chain from node av  to node z( )z nv v V∈  is represented as 
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( ,..., , ,..., )az a k j zf v v v v= , for any two adjacent nodes kv  and jv  in the above function call 

chain, there is kje E∈ , and this function call chain azf  contains kje . The chain set of all 
function call chains from the entry function node and terminating at each leaf function node is 
represented as { | ( ,..., , ,..., ), , , , }az az a k j z a K j z nC f f v v v v v V v V v V v V= = ∈ ∈ ∈ ∈ . 

In the directed software function invoke network, some directed edges are used by more 
function call chains, and some directed edges are used by less function call chains. This 
indicates that during the execution of software functions, the directed edge kje  can make 
different contributions. By calculating the number of function call chains containing the 
directed edge kje  in C , different weights are given to the directed edge kje . The directed edge 
with higher weight indicates that it makes more contribution in the process of software 
executing functions. The set of chains consisting of chains of function calls in C  containing 

kje  is denoted as kjC , use the number of elements in kjC  chain set | |kjC  to calculate the 

weight kjw  of kje , as shown in equation (1). 

kj kjw =| C |     (1) 
Definition 2.3. Directed weighted software function invoke network (DWFIN). Each directed 
edge in DFIN  is weighted, and a triple ( , , )DWFIN V E W=  is used to represent the 
directed weighted software function invoke network. Edge weight coefficient sets 

{ | | |, }kj kj kj kjW w w C e E= = ∈ .  

The edge weights establish a one-to-one correspondence between the elements of set kjw  

and set kje , ensuring that both sets contain an identical number of elements.  

3. Software Key Node Recognition Algorithm for Defect Detection 

3.1 Node Expansion Degree 
In software networks, node degree is a property that can measure the ability of nodes to 
propagate defects locally in the network. It has been widely used in various key node 
identification algorithms in software defect detection [10]. However, the ability of nodes to 
propagate defects is not only related to themselves, but also related to the ability of neighbor 
nodes to propagate defects. If a node itself has a weak ability to spread defects, but its neighbor 
nodes have a strong ability to spread defects, then according to the neighborhood principle, it 
is considered that the node has a strong ability to spread defects [12]. The degree of neighbor 
nodes in the network topology essentially characterizes the ability of the secondary neighbor 
nodes to propagate defects. Therefore, this subsection sets a dynamically adjustable influence 
coefficient 

ivµ  to balance the influence degree of outgoing edge neighbor nodes and outgoing 
edge secondary neighbor nodes on the defect propagation ability of the specified node in the 
local scope. The node expansion degree is designed according to the influence coefficient 

ivµ  
to measure the ability of a node in the directed weighted function call network to locally 
propagate defects in the network. 
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Definition 3.1. Node nearest neighbors set on out-direction (NNOD). In DWFIN, there is 
edge kje , and the modulated function node jv  is the outgoing neighbor of the calling function 

node kv . Meet with the calling function of node kv  all the callback function of node jv  node 

set { }jv  for the node kv  nearest neighbors set on out-direction, counted as k
oV , 

( )| |k
o kV K v= for the node number kv  nearest neighbors set on out-direction. If there is no 

edge in the edge set E that takes node kv  as the calling function, then nearest neighbors set on 

out-direction of node kv  is an empty set, and {}k
oV = . The weight of the nearest neighbors 

set on out-direction of node kv  is equal to the sum of the weights of all edges with node kv  as 
the calling function, that is, 

k
j o

k
o kj

v V

w w
∈

= ∑ . 

Definition 3.2. Node next nearest neighbors set on out-direction (NNNOD). In DWFIN, 
for k

m ov V∀ ∈ , the nearest neighbors set on out-direction of node mv  is denoted as m
oV . Define 

node kv  next nearest neighbors set on out-direction { |  and k k k k
oo m m o mV v v V v= ∈  }m

oV∈ , 

( )| |k
oo kV D v=  for the node number kv  next nearest neighbors set on out-direction. If there is 

no edge in the edge set E with node mv  as the calling function or the nearest neighbors set on 
out-direction of node kv  is an empty set, then next nearest neighbors set on out-direction of 

node kv  is an empty set, and {}k
ooV = . The weight of the next nearest neighbors set on out-

direction of node kv  is equal to the sum of the weights of all edges with node ( )k
m m ov v V∈  as 

the calling function, that is, 
k

j oo

k
oo mj

v V

w w
∈

= ∑ . 

During the execution of a function within software, the set of direct neighbors (i.e., nodes 
that are immediately invoked as function nodes) exerts a more significant influence on the 
proper functioning of the software than the set of indirect neighbors (i.e., nodes that are 
invoked through secondary connections). To address this disparity, we have devised a dynamic 
adjustment mechanism for the impact factors, which allows for the balanced assessment of the 
influence exerted by both directly and indirectly invoked function nodes on the node in 
question. The node expansion degree is defined accordingly. 

Definition 3.3. Node expansion degree (NED). The node expansion degree ( )iNED v  of 
the node iv  in the directed weighted software function invoke network is defined to measure 
the ability of the node iv  to propagate defects locally in the network. The calculation is shown 
in equation (2). 

   ( ) ( ) ( )
ii i v iNED v K v u D v= +                                                      (2) 

Among them, ( )iK v  is the number of nearest neighbors set on out-direction of node iv , 

( )iD v  is the number of next nearest neighbors set on out-direction of node iv , and 
ivu  is the 

influence coefficient of ( )iD v . Through the influence coefficient, the influence degree of the 
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function node directly called by the node iv  and the function node indirectly called on the 

node is adjusted. The calculation process of 
ivµ  is shown in equation (3). 

 

                                                                 
i

i
o

v i i
o oo

w
w w

µ =
+

                                                     (3) 

Among them, i
ow  represents the sum of the weight of the node iv ’s nearest neighbors set 

on out-direction, as derived from Definition 3.1. And i
oow  represents the sum of the weight of 

the node iv ’s next nearest neighbors set on out-direction, obtained through Definition 3.2. 
The directed edge weight of nodes in the network represents the degree of defect 

propagation between nodes. In the local scope, the neighbor node is closer to the specified 
node and has greater influence on it, while the sub-neighbor node is farther away from the 
specified node and has less influence on it. Therefore, the influence coefficient 

ivu , which can 
be dynamically adjusted, is calculated to balance the influence of the nearest neighbors on out-
direction of node iv  and the next nearest neighbors on out-direction of node iv  on the defect 
propagation of node iv . 

 

3.2 Improved K-shell Position of Node 
In the network, the node expansion degree measures the ability of node defect propagation to 
a certain extent, but it is still an attribute characteristic of the node itself. It reflects the local 
defect propagation ability of nodes in the network, and ignores the global defect propagation 
ability of nodes. The K-shell decomposition algorithm quickly divides the network from the 
outside to the inside according to the node location information, and the k-shell position of the 
node after partition represents the relative position of the node in the network. The more the 
K-shell position of the node is in the core, the greater the influence of the node on the network 
[13]. Xu et al. [12] have demonstrated that the K-shell decomposition algorithm effectively 
quantifies a node's global defect propagation capacity within the network. However, this 
algorithm operates on a coarse-grained level, often assigning identical K-shell positions to a 
multitude of nodes. This approach implies a uniform importance among these nodes, which 
contradicts the inherent variability in the significance of functional entities within software 
systems.  To more precisely distinguish the importance of functional entities, this manuscript 
employs an improved K-shell position metric to assess a node's global defect propagation 
capacity within the network. The program instance written in C language is abstracted as a 
directed weighted software function invoke network. The network constructed by the program 
instance is shown in Fig. 1. It consists of 12 nodes and 14 edges. The K-shell decomposition 
of the constructed network is performed to calculate the improved K-shell position of the node. 
The specific process is as follows: 
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       Fig. 1.  Directed weighted software function invoke network 

 
(a) The directed weighted software function invoke network in Fig. 1 is regarded as the 

corresponding undirected weighted software function invoke network, and the nodes with 
degree 1 in the corresponding undirected weighted software function call network are deleted. 
The first deleted nodes are gv ， jv ， lv . Then, the deletion operation is repeated for the nodes 
with degree of 1 in the remaining network after removing the nodes, and the second deleted 
node is fv . At this time, the degree of nodes in the remaining network is at least 2, so the K-
shell position of all nodes deleted above is 1. 

(b) Repeat the process in (a), find the nodes with degree of 2 in the remaining network for 
deletion, and the nodes deleted for the third time are bv ， dv ， ev ， hv ， kv . Then, the nodes 
with a degree of 2 in the remaining network after removing the nodes are deleted repeatedly, 
and the fourth deleted nodes are cv ， av ， tv . At this time, all nodes in the network have been 
deleted, so the K-shell position of all nodes deleted above is 2. 

From the view of the network topology in Fig. 1, node fv  and node gv  are obviously 
different in importance. However, due to the coarse-grained problem of the K-shell 
decomposition algorithm, node fv  and node gv  have the same K-shell position, which means 

that the K-shell decomposition algorithm considers node fv  and node gv  to have the same 
influence on the global network structure. Obviously, this is inconsistent with the reality. It 
can be seen from the decomposition process (a) (b) of K-shell algorithm that the number of 
iterative layers of node fv  and node gv  for deletion operation in K-shell decomposition 
process is different. If the number of iterative layers when nodes are deleted is used as 
improved K-shell position of node, then the importance of nodes can be further distinguished. 

The directed weighted software function invoke network removes the function nodes 
according to the above K-shell algorithm decomposition process (a) and process (b). The 
number of iterations when removing the function node iv  is called improved K-shell position 
of the node iv , which is denoted as ( )iNIKP v . That is, if in the directed weighted software 
function invoke network, the number of iterations that the function node iv  is removed is q, 
then the improved K-shell position of the function node iv  can be expressed as ( )iNIKP v q= . 
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In this way, the improved K-shell position of each node in the directed weighted software 
function invoke network in Fig. 1 is shown in Table 1. 

 
Table 1.  Improved K-shell position of all nodes 

Improved K-shell position of node Delete nodes K-shell position of node 

   1 
gv 、 jv 、 lv  1 

2 
fv  1 

3 
bv 、 dv 、 ev 、 hv 、 kv  2 

4 
cv 、 av 、 tv  2 

 
For the directed weighted software function invoke network node fv  and node gv  shown 

in Fig. 1, the K-shell position of node is 1, the number of iterations when the K-shell 
decomposition algorithm deletes the fv  node is 2, and the number of iterations when deleting 

the gv  node is 1. Therefore, the improved K-shell position of the node fv  is 2, and the 

improved K-shell position of the node gv  is 1. From the perspective of network topology, the 

relative position of node fv  in the network is closer to the root node than that of node gv , and 
it should have a stronger influence in the global structure of the network, indicating that the 
improved K-shell position of node can more accurately represent the importance of nodes in 
the network. 

3.3 Measurement of Node Defect Propagation Capability 
When a node in the directed weighted software function invoke network has a defect, the 
defect may be propagated to the neighboring nodes through the node invocation relationship 
in the network, so that the neighboring nodes also have defects. However, due to the relative 
position of the node in the network, the range of defect propagation may be limited. Therefore, 
assessing the defect propagation solely within the local or global context of a node is a limited 
approach. It does not accurately capture the node's true defect propagation potential within the 
network. Deng et al. [14] proposed a node importance recognition algorithm by combining the 
node degree with the node K-shell position. The algorithm has achieved good results in the 
identification of node importance in different complex networks. The basic idea of the 
algorithm is that the nodes with great influence in the local range and close to the core of the 
network should have greater influence. This is consistent with the characteristics of functional 
entity defect propagation in software systems. In the software system, if a function entity has 
an important position in its own module, and the module to which the function entity belongs 
to the core module of the software system, then when the function entity defects, the defects 
will have a great impact on the entire software system with the invoke between functions. In 
this section, a measure of node defect propagation capability is proposed to analyze the degree 
of node defect propagation by considering node expansion degree and improved K-shell 
position of node. 

Definition 3.4. Node defect propagation capability (NDPC). The local defect propagation 
capability of the node iv  in the directed weighted software function invoke network can be 
measured by the node expansion degree. The global defect propagation capability of the node 

iv  can be measured by the improved K-shell position measurement of the node. The node 
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defect propagation capability measure ( )iNDPC v  of the node iv  is defined to measure the 
capability of the node iv  to propagate its own defects to other nodes in the network. The 
calculation is shown in equation (4). 
                                                        ( ) ( ) ( )i i iNDPC v NED v NIKP v= ∗                     (4) 

Among them, ( )iNDPC v  represents the capability of node iv  to propagate its own defects 
in the network. The larger the NDPC value of node iv  is, the greater the capability of node iv  
to propagate defects, and the more likely errors occur, resulting in software system crash. 

Definition 3.5. key nodes (KN). The key nodes in DWFIN are the set of nodes iv  in the 
network which are sorted from large to small according to the NDPC value of node defect 
propagation ability, and the top P nodes. Expressed as { | 1,2,..., }

jiKN v j P= = , where 
jiv  

is the node whose defect propagation ability ranks j. 
 

3.4 Software Key Node Recognition Algorithm for Defect Detection based on 
Node Expansion Degree and Improved K-shell Position 
Using the software network node defect propagation capability measure NDPC proposed in 
Section 3.3, a software defect detection key node recognition algorithm based on node 
expansion degree and improved K-shell position (SDD_KNR) is designed to identify the key 
nodes in the software defect detection process. The key node recognition algorithm 
SDD_KNR is divided into four main stages. Firstly, the expansion degree NED of each node 
is calculated on the directed weighted software function invoke network. The node expansion 
degree calculates the capability of the node to propagate defects in the local range of the 
network by balancing the influence of the node neighbor node and the secondary neighbor 
node on it. Secondly, the K-shell decomposition of the directed weighted software function 
invoke network is performed to obtain the improved K-shell position NIKP that can 
characterize the defect propagation capability of the node in the global range of the network. 
Then, the node defect propagation capability NDPC is obtained by combining the node 
expansion degree NED with the improved K-shell position of node NIKP. Finally, the node 
set composed of P nodes with the highest NDPC value of node defect propagation capability 
is the key node of software defect detection. 

The algorithm described as follows: 
Input： ( , , )DWFIN V E W=  
Output： KN  
Main program： ( )igetNDPC v  

1) Initialize set Set NULL= ， KN NULL=  
2) Calculate the ( )iNIKP v  for each node ( )i iv v V∈       // The second stage 
3) For each ( )i iv v V∈  do 
4)      ( ) ( ) ( )i i iNDPC v NED v NIKP v= ∗  
5)       Add ( )iNDPC v  to Set      // The third stage 
6) Sort the values in Set in descending order 
7) Put the nodes corresponding to the first Top-P values in Set into KN   // The fourth stage 
8) Return  KN  
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Subroutine： ( )igetNED v       // The first stage 

1) Get i
oV  of node iv  and calculate the number of ( )i

o iV K v  

2) Calculate the i
ow  of node iv  

3) Initialize ( ) 0, 0i
i ooD v w= =  

4) For each ( )i
j j ov v V∈  do 

5)       Calculate the j
oV  of node jv  

6)       Calculate the number of  ( )j
o jV K v  

7)       Calculate the j
ow  of node jv  

8)      ( ) ( ) ( )i i jD v D v K v= +  

9)      i i j
oo oo ow w w= +  

10) Calculate / ( )
i

i i i
v o o oou w w w= +  

11) Calculate  ( ) ( ) * ( )
ii i v iNED v K v D vµ= +  

12) Return  ( )iNED v  
The complexity of the SDD_KNR algorithm is primarily concentrated in two critical 

processes: firstly, the preprocessing phase, which involves constructing a directed, weighted 
network of software function calls. During the encoding phase, this study utilizes a depth-first 
search (DFS) strategy to enumerate all function call chains within the network, facilitating the 
subsequent computation of the directed edge weights. The most extensive search scenario 
entails traversing every node and edge, yielding a time complexity of O（N+E）, where N 
signifies the node count, and E represents the edge count. Secondly, we calculate the defect 
propagation capacity of nodes, a process that primarily involves assessing both the expansion 
degree and the improved K-shell position of each node. In the most exhaustive scenario for 
calculating the expansion degree, the search encompasses all nodes and edges within the 
network, resulting in a time complexity of O（N）. For determining the improved K-shell 
position, the most extensive search scenario involves iterating through all network nodes, 
leading to a time complexity ofO（N+E）. Consequently, the overall time complexity for this 
process isO O+（N） （N+E）. Considering the two aforementioned processes, the overall time 
complexity of our algorithm is 2*O O+（N+E） （N）, which is not excessively high. This 
moderate complexity renders the algorithm suitable for the majority of large-scale software 
systems. 

3.5 Case Calculation 
The directed weighted software function invoke network is abstracted from the program 
instance in Fig. 1, which is used as a network instance to illustrate the solution process of the 
SDD_KNR algorithm. The node av  as an example. The solution process is as follows: 
(1) Calculate the weight sum of the nearest neighbors set on out-direction of node av . The 
node set { , , }b c dv v v  is the nearest neighbors set on out-direction of node av . According to the 
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equation (1), the corresponding weights are {2,5,5}, then the weight sum of the nearest 
neighbors set on out-direction of node av  is 12. 
(2) Calculate the weight sum of the next nearest neighbors set on out-direction of node av . 
The node set { , , , }e t k cv v v v  is the next nearest neighbors set on out-direction of node av , and 
its number is 4. According to equation (1), the corresponding weights are {2, 4, 6, 5}, then the 
weight sum of the next nearest neighbors set on out-direction of the node av  is 17. 
(3) The NED value of the expansion degree of node av  is calculated. According to (1), (2) and 

equation (3), the influence coefficient of node av  is denoted as 
avµ  and its value is 0.4. Then 

according to equation (2), the expansion degree of av  can be obtained as 4.6. 
(4) The NDPC value of node defect propagation capability of node av  is calculated. Using 
improved the K-shell decomposition algorithm, it is easy to get the improved K-shell position 
of node av  is 4. According to equation (4), the defect propagation capability of node av  can 
be obtained as 18.4. 

Similarly, the NDPC value of the node defect propagation capability of other nodes can be 
obtained. The NMNC algorithm [12] is used to calculate the capability value of node defect 
propagation of the network in Fig. 1, and the obtained results are compared with the results of 
the SDD_KNR algorithm. The node defect propagation capability values obtained by the two 
algorithms are shown in Table 2. 
 

Table 2. The ranking of values of node defect propagation capability of each node 

 
It can be seen from Table 2 that the SDD_KNR algorithm in this paper takes the lead in 

identifying the entry node av . From the network, it can be known that the node av  does 
occupy a great advantage in structure. Through the node av , all nodes in the network can be 
called. If the node av  is protected in advance, the normal operation of the program can be 
effectively protected. Among other nodes in the network, for example, nodes bv  and dv  have 
the same network structure, they are all the nearest neighbors on out-direction of node av . And 
the nearest neighbors on out-direction of node bv  is ev , the nearest neighbors on out-direction 
of node dv  is cv , and both node ev  and node cv  have two nearest neighbors on out-direction 
nodes. But nodes ev , fv   and gv  can only be called by node bv , and nodes that node dv  can 

call can be called by node cv . Therefore, from the perspective of network structure, node bv  
is more important than node dv . In identifying the node defect propagation capability, the 
recognition result of SDD_KNR algorithm is that the defect propagation capability of node bv  

Rank 1 2 3 4 5 6 7 8 9 10 11 12 
             SDD_KNR 

Number av  cv  kv  ev  tv  bv  dv  fv  gv  hv  jv  lv  

SDD_KNR Value 18.4 14.4 8.4 8.1 8.0 6.0 4.8 2.0 0 0 0 0 

NMNC Number cv  tv  kv  av  dv  ev  hv  bv  jv  lv  fv  gv  

NMNC Value 108.1 102.8 82.9 79.2 64.8 54.2 52.8 45.2 33.2 28.1 26.0 12.8 
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is greater than that of node dv . But the recognition result of NMNC algorithm is that the defect 
propagation capability of node dv  is greater than that of node bv . The SDD_KNR algorithm 
is closer to the real situation of the network structure, indicating that the SDD_KNR algorithm 
can accurately identify the nodes with greater defect propagation capability in the network. 

4. Experiments 

4.1 Dataset description 

Experiments are done on a PC at AMD Ryzen 5 5600H CPU @ 3.3 GHz with 16 GB of RAM. 
To evaluate the performance of the SN_KNR algorithm, we conducted experimental 

analyses utilizing three procedural software systems: Tar, Nano, and Cflow. The three 
software systems exhibit variations in the number of function entities they encompass, as well 
as in the range of functionalities these functions can perform. Within the Ubuntu environment, 
we conducted dynamic execution tracing of the software system using the GCC compiler and 
the Pvtrace tool. We marked the software functions to capture their dynamic invocation 
sequences, which were then logged in .dot files. Subsequently, these .dot files were utilized to 
construct a directed, weighted network of software function calls. Table 3 presents the 
statistical data for the three distinct network types under investigation. Among them, |V| 
represents the number of nodes in the network, |E| represents the number of edges in the 
network, |K| represents the average degree of the network, <d> represents the average shortest 
path of the network, C represents the clustering coefficient of the network, M represents the 
density of the network, and D represents the diameter of the network. 
 

Table 3.  Network statistics information of three software systems 
Software |V| |E| <K> <d> C M D 

        Tar 190 260 2.737 4.864 0.0144 0.0145 11 
Nano 103 151 2.932 3.783 0.0423 0.0287 9 
Cflow 106 179 3.377 4.791 0.0928 0.0322 11 

 
 

As illustrated in Table 3, the directed, weighted software function invoke networks 
constructed from the three software systems exhibit distinct statistical characteristics. The Tar 
software system, which boasts five primary functions including file creation and 
decompression, exhibits the lowest inter-entity dependency among its function entities and has 
the smallest clustering coefficient among the three networks analyzed. The Nano software 
system, featuring three core functionalities such as text editing and saving, demonstrates a 
moderately higher inter-entity dependency compared to the others, and its clustering 
coefficient is intermediate among the three networks studied. The primary function of the 
Cflow software system is to establish call relationships within language programming. Given 
that the majority of its function entities are dedicated to this purpose, the system exhibits high 
inter-entity dependency, resulting in the highest clustering coefficient among the three 
networks analyzed. 
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4.2 Experiment design 

Three groups of experiments are designed to analyze the feasibility and effectiveness of the 
SDD_KNR algorithm in this paper: 

1) Experiment one: In the Tar directed weighted software function invoke network, the key 
node recognition algorithm based on local centrality [10] (KNMWSG) and SDD_KNR 
algorithm are applied to obtain the value of node defect propagation capability, and the NED 
value of node expansion degree and the NIKP value of improved K-shell position of node in 
the network are calculated. The feasibility of the SDD_KNR algorithm is verified by analyzing 
the influence of the nodes in the top 10 of the four metrics on the network. 

2) Experiment two: Two classical key node recognition algorithms, betweenness centrality 
algorithm [15] (BC) and K-shell algorithm [15] (K-shell), and two existing key node 
recognition algorithms, KNMWSG algorithm and node correlation based key node recognition 
algorithm [12] (NMNC), are selected as comparison algorithms. The experimental results of 
different algorithms in the three directed weighted software function invoke networks of Nano, 
Cflow and Tar were recorded. Removing the top 20% of the nodes in the experimental results 
simulates the situation that the network is deliberately attacked, and analyzes the impact of 
removing nodes on the network to select the key nodes in the software defect detection process. 

3) Experiment three: Using the index of network efficiency [15] and node propagation force 
[12], the key nodes of Nano, Cflow and Tar obtained by BC, K-Shell, KNMWSG, NMNC and 
SDD_KNR were compared and evaluated to verify the effectiveness of SDD_KNR algorithm.  

We have prioritized all nodes in the network based on the computed results from our key 
node identification algorithm, ranking them in descending order. Subsequently, the top K 
nodes are excised from the network, after which we calculate the efficiency of the remaining 
network and the size of its largest connected component. A lower network efficiency score, 
coupled with a reduced number of nodes in the largest connected component, indicates a 
diminished capacity for interconnectivity among the remaining nodes.  This reduction signifies 
a more severe disruption to the network's integrity, thereby highlighting the significant 
influence of the removed node set on the network's overall robustness. 

 

4.3 Algorithm feasibility analysis 

The SDD_KNR algorithm is used to obtain the defect propagation capability value NDPC of 
each node in the directed weighted software function invoke network of Nano, Cflow and Tar. 
The node NDPC value distribution of the directed weighted software function invoke network 
of the three software is shown in Fig. 2. In the Fig. 2, the abscissa represents the node ranking 
of the three networks, and the ordinate represents the NDPC value corresponding to each node. 
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Fig. 2.  Directed weighted software function invoke network node NDPC value distribution 

 
In the Fig. 2, the NDPC value curves of the three network nodes as a whole show the 

characteristics that the NDPC value of the node decreases with the increase of node ranking. 
Especially at the beginning of the curve, the NDPC value of the node shows a cliff-like decline, 
that is, the NDPC value of the node decreases significantly compared with the NDPC value of 
the previous node, indicating that there are indeed a small number of key nodes in the network. 
These nodes have great capability of defect propagation and should be paid attention to in the 
process of software defect detection. 

In order to further verify the feasibility of the SDD_KNR algorithm, the directed weighted 
software function invoke network established by Tar software is selected. The KNMWSG 
algorithm and the SDD_KNR algorithm are used to obtain the node defect propagation 
capability value. At the same time, the network node expansion degree NED value and the 
node improved K-shell position NIKP value are calculated. The top 10 network nodes of these 
four metrics are shown in Table 4. 
 

Table 4.  The top 10 nodes for each of the four metrics 

Rank KNMWSG Node expansion 
degree 

Improved K-shell 
position of node SDD_KNR 

     1 main main close_archive update_archive 
2 update_archive update_archive read_and read_and 
3 create_archive read_and update_archive main 
4 read_and dump_file0 write_eot extract_archive 
5 _open_archive extract_archive set_next_block_after dump_file0 
6 open_archive start_header tar_stat_destroy extract_file 
7 dump_regular_file _open_archive open_archive create_archive 
8 dump_file dump_regular_file skip_file _open_archive 
9 dump_file0 extract_file create_archive dump_regular_file 
10 extract_file decode_header find_next_block dump_file 
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As shown in Table 4, the nodes with the top 10 node defect propagation capability values 
obtained by the KNMWSG algorithm are different from the nodes with the top 10 node NED 
metrics. Among them, the KNMWSG algorithm identifies that the open_archive node ranked 
6 is not in the top 10 node sequence of the NED metric, and the start_header node ranked 6 of 
the NED metric is not in the top 10 node sequence identified by the KNMWSG algorithm. Fig. 
3 is the local network diagram of node open_archive and node start_header in Tar network. 
 
 

 
(a) node open_archive                                        (b) node start_header 

Fig. 3.  Local network graph of open_archive and start_header nodes in Tar network 
 
 

From Fig. 3, it can be seen that the node start_header has a more complex structure than 
the node open_archive in the local network. That is to say, when the node open_archive and 
the node start_header call a defect, it is more likely to infect the defect than the node 
open_archive due to the more complexity of the node start_header. The node open_archive 
and the node start_header are used to simulate the degree of damage to the network when the 
software cannot run due to defects. The network connectivity rate decreases to 0.2381 after 
the node open_archive is removed, and the network connectivity rate decreases to 0.2323 after 
the node start_header is removed. It shows that the node start_header is more important than 
the network, and the node expansion degree can measure the importance of the node to a 
certain extent. 

From the last column of Table 3, it can be seen that after the node start_header is combined 
with its improved K-shell position, its node ranking falls out of the top 10. The previous 7th-
ranked _open_archive node and 8th-ranked dump_regular_file node rank 8th and 9th, 
respectively, when combined with their improved k-shell positions. Fig. 4 is the local network 
diagram of the node _open_archive and the node dump_regular_file in the Tar network. 
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（a）node _open_archive                               （b）node dump_regular_file 

Fig. 4.  Local network graphs of _open _ archive and dump_regular_file nodes in Tar network 
 

It can be seen from Fig. 4 that _open_archive, dump_regular_file nodes and start_header 
nodes have similar complexity in the Tar local network, so their node expansion metrics are 
close, but _open_archive and dump_regular_file nodes have greater influence on the Tar 
overall network than start_header nodes. For example, the dump_regular_file node, which is 
the in-degree node of the start_header node, means that in the software system, the function 
dump_regular_file node calls the start_header node. When the start_header node is defective, 
the function dump_regular_file node is more likely to defect and cannot run. The node 
_open_archive and the node dump_regular_file are used to simulate the degree of damage to 
the network when the software cannot run due to defects. The network connectivity rate 
decreases to 0.2179 after the node _open_archive is removed, and the network connectivity 
rate decreases to 0.2303 after the dump_regular_file node is removed, which is lower than the 
network connectivity rate after the node start_header is removed to 0.2323. It shows that the 
SDD_KNR algorithm combined with the node expansion degree and the node improved K-
shell position can be applied to the identification of key nodes in software defect detection. 

4.4 Key node of software defect detection 
SDD_KNR algorithm, BC algorithm, K-shell algorithm, KNMWSG algorithm and NMNC 
algorithm are used to obtain five kinds of node sequences sorted by importance from large to 
small on the directed weighted software function invoke network constructed by Nano, Cflow 
and Tar software systems. Then, the first 20% nodes of the five node sequences are removed 
from the network to simulate the deliberate attack on the network, and the maximum number 
of connected subgraph nodes in the remaining network is calculated. The graph of the 
maximum number of connected subgraph nodes in the remaining network in the three directed 
weighted software function invoke networks with the proportion of deleted nodes is shown in 
Fig. 5. 
 

 
(a) Nano                                     (b) Cflow                                        (c) Tar            

Fig. 5.  The maximum number of connected subgraph nodes in the remaining network 
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As shown in Fig. 5 (a)(b)(c), in the process of deleting the first 20 % nodes of the three 
network node sequences, when the proportion of deleted nodes is 5%, 10%, 15% and 20%, the 
maximum number of connected subgraph nodes in the remaining network identified by the 
SDD_KNR algorithm is the least in the process of node deletion. From the perspective of 
network robustness, the less the maximum number of connected subgraph nodes after deleting 
nodes, the greater the impact of deleted nodes on the robustness of the network, that is, the 
greater the importance of these nodes to the network. From the perspective of software defect 
detection, deleting a node is equivalent to a node that is defective and cannot run. The smaller 
the number of maximum connected subgraph nodes after deleting a node, the less functions 
the software system can run, indicating that the deleted nodes have a greater impact on the 
software system. In this way, these nodes that have a significant impact on the software system 
should be focused on during software defect detection. These nodes that are focused on are the 
key nodes for software defect detection. In the related research [16,17,18] network node 
sequence, the recommended threshold of key nodes is 15%. Therefore, based on the above 
experimental analysis, the first 15% of the node sequence obtained by the SDD_KNR 
algorithm is selected as the key node of the software defect detection process for experimental 
effectiveness analysis. 

4.5 Effectiveness Analysis of Key Nodes 

A. Analysis of network efficiency 
In the directed weighted software function invoke network established by three software 
systems Nano, Cflow and Tar, the software defect detection key node recognition algorithm is 
used to identify the key nodes. Five algorithms are used to obtain the node ranking sequence 
corresponding to the node defect propagation capability value in the network. According to 
the analysis results in Section 4.4, the first 15% nodes of the node ranking sequence are taken 
as the key nodes in the software defect detection process. The results are shown in Table 5. 
 

Table 5.  The key nodes obtained by SDD_KNR and other four key defect node recognition 
algorithms on three software networks 

Nano 

Rank SDD_KNR NMNC KNMWSG K-shell BC 

      1 main main main make_new_node display_string 

2 open_buffer open_buffer open_buffer read_file statusline 

3 read_file copy_of read_file copy_of read_file 

4 copy_of read_file open_file make_new_buffer open_buffer 

5 nmalloc nmalloc statusbar open_buffer copy_of 

6 display_string make_new_buffer edit_refresh history_init close_and_go 

7 ingraft_buffer display_string prepare_for_displ
ay 

nmalloc finish 

8 statusline statusline do_rcfiles main update_line 

9 do_rcfiles make_new_node have_statedir ingraft_buffer titlebar 

10 make_new_buffer ingraft_buffer process_a_keystro
ke 

nrealloc statusbar 

11 make_new_node history_init stat_with_alloc mallocstrcpy do_exit 
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12 nrealloc do_rcfiles display_string statusline process_a_keyst
roke 

13 update_line nrealloc parse_kbinput do_rcfiles ingraft_buffer 

14 history_init open_file load_history get_homedir parse_kbinput 

15 edit_refresh mallocstrcpy is_good_file display_string get_kbinput 
 

Cflow 

Rank SDD_KNR NMNC KNMWSG K-shell BC 
      1 nexttoken nexttoken parse_declaration dirdcl nexttoken 

2 inverted_tree expression parse_variable_de
claration nexttoken yylex 

3 direct_tree parse_variable_de
claration maybe_parm_list putback get_token 

4 parse_variable_d
eclaration inverted_tree dirdcl dcl parse_declaratio

n 

5 tree_output direct_tree dcl expression parse_variable_
declaration 

6 expression tree_output func_body add_reference parse_dcl 

7 parse_declaration func_body parse_typedef maybe_parm_list maybe_parm_lis
t 

8 func_body fake_struct yyparse parse_variable_de
claration declare 

9 parse_dcl putback parse_function_de
claration reference yy_get_next_bu

ffer 
10 parse_typedef parse_typedef main get_symbol yyrestart 

11 declare dirdcl expression parse_typedef dirdcl 

12 yyparse yyparse nexttoken linked_list_appen
d expression 

13 main parse_declaration get_token is_function linked_list_iterate 

14 dirdcl dcl fake_struct func_body func_body 

15 fake_struct maybe_parm_list declare is_printable yyparse  
Tar 

Rank SDD_KNR NMNC KNMWSG K-shell BC 
      1 update_archive update_archive main close_archive flush_archive 

2 read_and read_and update_archive read_and dump_file0 

3 main set_next_block_a
fter create_archive update_archive find_next_block 

4 extract_archive tar_stat_destroy read_and write_eot dump_regular_fil
e 

5 dump_file0 create_archive _open_archive set_next_block_a
fter dump_file 

6 extract_file find_next_block open_archive tar_stat_destroy start_header 

7 create_archive extract_file dump_regular_fil
e open_archive _open_archive 

8 _open_archive main dump_file skip_file gnu_flush_write 
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9 dump_regular_fil
e close_archive dump_file0 create_archive flush_read 

10 dump_file decode_header extract_file find_next_block open_archive 

11 find_next_block extract_archive extract_archive extract_file update_archive 

12 close_archive dump_file0 find_next_block extract_archive close_archive 

13 open_archive read_header flush_archive skip_member _gnu_flush_write 

14 tar_stat_destroy write_eot close_archive excluded_name gnu_flush_read 

15 set_next_block_a
fter open_archive read_header available_space_

after read_and 

16 start_header dump_regular_fil
e 

check_compresse
d_archive read_header extract_archive 

17 decode_header _open_archive write_eot _open_archive decode_header 

18 skip_member dump_file skip_file dump_file extract_file 

19 read_header start_header write_short_name main create_archive 

20 write_eot skip_file start_header dump_regular_file _flush_write 

21 assign_string excluded_name skip_member check_compresse
d_archive _gnu_flush_read 

22 decode_options skip_member write_header_na
me dump_file0 name_next_elt 

23 skip_file assign_string _flush_write assign_string finish_header 

24 apply_nonancestor_
delayed_set_stat name_gather file_selection_opt

ion tar_checksum write_short_name 

25 to_chars transform_stat_in
fo file_count_links simple_finish_he

ader tar_stat_destroy 

26 flush_archive names_notfound name_gather start_header set_stat 

27 name_next_elt available_space_
after gnu_flush_write finish_deferred_u

nlinks 
write_header_na

me 

28 name_gather finish_deferred_u
nlinks 

buffer_write_glob
al_xheader mv_begin_read apply_nonancestor_

delayed_set_stat 
 

The initial network efficiency of Nano network is 0.307, the initial network efficiency of 
Cflow network is 0.261, and the initial network efficiency of Tar network is 0.242. The three 
networks are sequentially removed according to the order of importance of key nodes in Table 
5 to simulate the deliberate attack on the network. With the removal of key nodes, the overall 
trend of network efficiency changes is shown in Fig. 6. 
 

 
（a）Nano                                 （b）Cflow                                 （c）Tar                   

Fig. 6.  The overall change trend of network efficiency after the key nodes are removed in turn 
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As shown in Fig. 6 (a)(b)(c), in the process of removing key nodes in the network 
successively, the network efficiency of the five algorithms on the three networks all showed 
an obvious downward trend. As a whole, the network efficiency of SDD_KNR declined faster 
than that of the other four algorithms. After removing all the key nodes, on the Nano network, 
the network efficiency of algorithm BC, algorithm K-shell, algorithm KNMWSG, algorithm 
NMNC and algorithm SDD_KNR decreased by 0.131, 0.256, 0.214, 0.260 and 0.262 
respectively. Compared with the network decline rate of the other four algorithm networks, 
the network efficiency decline rate of SDD_KNR Increased by 74.4 %, 11.7 %, 51.6 % and 
4.2 % respectively. On the Cflow network, the network efficiency of algorithm BC, algorithm 
K-shell, algorithm KNMWSG, algorithm NMNC and SDD_KNR decreased by 0.108, 0.05, 
0.107, 0.128 and 0.186 respectively. Compared with the network decline rate of the other four 
algorithms, the network efficiency decline rate of SDD_KNR increased by 50.9 %, 64.4 %, 
51.4 % and 43.6 % respectively. On the Tar network, the network efficiency of algorithm BC, 
algorithm K-shell, algorithm KNMWSG, algorithm NMNC and SDD_KNR decreased by 
0.215, 0.220, 0.213, 0.223 and 0.232 respectively. Compared with the network decline rate of 
the other four algorithm networks, the network efficiency decline rate of SDD_KNR increased 
by 62.4 %, 53.5 %, 65.4 % and 46.5 % respectively. 

After the above key nodes are removed successively, the details of the decline in each part 
of the network efficiency are shown in Fig. 7. 
 

 
（a）Nano                                    （b）Cflow                                （c）Tar                       

Fig. 7.  The detail change trend of network efficiency after key nodes are removed in turn 
 

As shown in Fig. 7 (a)(b)(c), in the process of removing key nodes, on Nano network, 
SDD_KNR performs the best when the proportion of nodes is deleted at 8 places, ranks first 
with NMNC algorithm when the proportion of nodes is deleted at 5 places, and ranks second 
when the proportion of nodes is deleted at 2 places. On the Cflow network, SDD_KNR 
performs best when deleting the proportion of nodes at 13 of them, ranks second when deleting 
the proportion of nodes at 1, and ranks third when deleting the proportion of nodes at 1. On 
the Tar network, SDD_KNR performs best when deleting the proportion of nodes at 11 of 
them, and performs second when deleting the proportion of nodes at 2. On the whole, most of 
the network efficiency degradation processes of algorithm BC, algorithm K-shell algorithm 
KNMWSG and algorithm NMNC are worse than SDD_KNR, which indicates that only 
considering the ability of local or global defect propagation in the network cannot accurately 
identify the key nodes in the software defect detection process. In summary, in the process of 
removing key nodes on the three networks, SDD_KNR algorithm is at a low network 
efficiency in most of the processes, indicating that SDD_KNR algorithm can effectively 
identify key nodes that may have an important impact on the network efficiency. 

 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024                                  1837 

B. Analysis of node propagation force 
The epidemic model is a common model for the inspection of key nodes in the software defect 
detection process. In this section, the SI epidemic propagation model is applied. The network 
key nodes identified by different algorithms are regarded as defect sources to infect their 
neighbor nodes, and the number of infected nodes in a certain period of time is used as the 
node propagation force. Under the same conditions, the more the number of infected nodes, 
the stronger the node propagation force. Five key node recognition algorithms were applied to 
the directed weighted software function invoke network established by the software packages 
Nano, Cflow and Tar to obtain the network key node, which was used as the defect source to 
conduct the infection propagation experiment of the SI model. The total number of infected 
nodes of each algorithm changed with the time step t, as shown in Fig. 8. 
 

 
(a) Nano                                    (b) Cflow                                          (c) Tar                  

Fig. 8.  Key node propagation experiment                                            
 

On the three networks in Fig. 8, the curve of SDD_KNR is above the other four algorithms, 
indicating that SDD_KNR is ahead of the other four algorithms in the first propagation speed 
on the three networks. On Nano network, SDD_KNR has an average increase of 3.9%, 4.3%, 
1.8% and 3.7% compared with BC, K-shell, KNMWSG and NMNC respectively. On Cflow 
network, SDD_KNR has an average increase of 8.9%, 12.2%, 10.9% and 6.4% compared with 
BC, K-shell, KNMWSG and NMNC respectively. On Tar network, SDD_KNR has an average 
increase of 2.4%, 6.4%, 3.6% and 5.1% over BC, K-shell, KNMWSG and NMNC respectively. 

The key nodes identified by the five algorithms are subjected to propagation experiments. 
From the experimental results, it can be seen that the key nodes identified by the SDD_KNR 
algorithm will propagate the defects to most nodes in the network, making most of the other 
nodes also defective. Therefore, in the software defect detection, if these key nodes can be 
focused on in advance, the failure of the software system can be prevented. 

5. Conclusion 
In this paper, a key node recognition algorithm for software defect detection is proposed to 
solve the problem of insufficient recognition of existing key node recognition algorithms for 
software defect detection. Identify the key nodes of the software defect detection process. 
Experiments are carried out on the real software system Tar, and the feasibility of SDD_KNR 
algorithm is analyzed. The SDD_KNR algorithm and the other four algorithms are applied to 
the real software systems Nano, Cflow and Tar. The network efficiency and node propagation 
force index of the key node set identified by the SDD_KNR algorithm are better than the other 
four algorithms, which verifies the effectiveness of the SDD_KNR algorithm. 

While our proposed algorithm demonstrates feasibility and efficacy in identifying critical 
nodes for defect detection within process-oriented software systems, its applicability within 
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object-oriented systems remains to be substantiated. In subsequent research, we intend to 
confirm and refine the algorithm's effectiveness, specifically targeting process-oriented and 
object-oriented software systems characterized by higher clustering coefficients. 
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