• Title/Summary/Keyword: Detection and Identification

검색결과 1,746건 처리시간 0.024초

인공지능(AI)을 활용한 드론방어체계 성능향상 방안에 관한 연구 (A study on Improving the Performance of Anti - Drone Systems using AI)

  • 마해철;문종찬;박재영;이수한;권혁진
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.126-134
    • /
    • 2023
  • Drones are emerging as a new security threat, and the world is working to reduce them. Detection and identification are the most difficult and important parts of the anti-drone systems. Existing detection and identification methods each have their strengths and weaknesses, so complementary operations are required. Detection and identification performance in anti-drone systems can be improved through the use of artificial intelligence. This is because artificial intelligence can quickly analyze differences smaller than humans. There are three ways to utilize artificial intelligence. Through reinforcement learning-based physical control, noise and blur generated when the optical camera tracks the drone may be reduced, and tracking stability may be improved. The latest NeRF algorithm can be used to solve the problem of lack of enemy drone data. It is necessary to build a data network to utilize artificial intelligence. Through this, data can be efficiently collected and managed. In addition, model performance can be improved by regularly generating artificial intelligence learning data.

Satellite Fault Detection and Isolation Scheme with Modified Adaptive Fading EKF

  • Lim, Jun Kyu;Park, Chan Gook
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1401-1410
    • /
    • 2014
  • This paper presents a modified adaptive fading EKF (AFEKF) for sensor fault detection and isolation in the satellite. Also, the fault detection and isolation (FDI) scheme is developed in three phases. In the first phase, the AFEKF is modified to increase sensor fault detection performance. The sensor fault detection and sensor selection method are proposed. In the second phase, the IMM filer with scalar penalty is designed to detect wherever actuator faults occur. In the third phase of the FDI scheme, the sub-IMM filter is designed to identify the fault type which is either the total or partial fault. An important feature of the proposed FDI scheme can decrease the number of filters for detecting sensor fault. Also, the proposed scheme can classify fault detection and isolation as well as fault type identification.

가시광 무선인식장치에서 비트간 잡음검출에 의한 잡음광의 영향 감소 (Reducing the Effects of Noise Light Using Inter-Bit Noise Detection in a Visible Light Identification System)

  • 황다현;이성호
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.412-419
    • /
    • 2011
  • In this paper, we used the inter-bit noise detection method in order to reduce the effects of noise light in a visible light identification system that uses a visible LED as a carrier source. A visible light identification system consists of a reader and a transponder. When the enable signal from the reader is detected, the transponder encodes the response data in RZ(Return-to-Zero) bit stream and sends response signal by modulating a visible LED. The reader detects the response signal mixed with noise light, samples the noise voltage in each blank low time between data bits of the RZ signal, and recovers the original data by subtracting the sampled noise from the received signal. In experiments, we improved the signal-to-noise ratio by 20dB using the inter-bit noise detection method.

가중최소절대값을 이용한 변압기 텝 추정 알고리즘 (An Algorithm for Transformer Tap Estimation by WLAV State Estimator)

  • 김홍래;권형석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.279-281
    • /
    • 1999
  • This paper addresses the issues of the parameter error detection and identification in power system. The parameter error identification is carried out as part of the state estimation procedure. The weighted least absolute value(WLAV) estimation method is used for this procedure. The standard formulation of the state estimation problem is modified to include the effects of the parameter errors as well. A two step procedure for the detection and identification of faulted parameters is proposed. Supporting examples are given using IEEE 14 bus system.

  • PDF

트러스의 구조손상추정을 위한 진동모드민감도의 패턴인식 (Pattern Recognition of modal Sensitivity for Structural Damage Identification of Truss Structure)

  • 류연선
    • 한국해양공학회지
    • /
    • 제14권1호
    • /
    • pp.80-87
    • /
    • 2000
  • Despite many combined research efforts outstanding needs exist to develop robust safety-estimation methods for large complex structures. This paper presents a practical damage identification scheme which can be applied to truss structures using only limited modal responses. firstly a theory of pattern recognition (PR) is described. Secondly existing damage-detection algorithms are outlined and a newly-derived algorithms for truss structures. Finally the feasibility of the proposed scheme is evaluated using numerical examples of plane truss structures.

  • PDF

개인정보보호를 위한 다중 유형 객체 탐지 기반 비식별화 기법 (Multi-type object detection-based de-identification technique for personal information protection)

  • 길예슬;이효진;류정화;이일구
    • 융합보안논문지
    • /
    • 제22권5호
    • /
    • pp.11-20
    • /
    • 2022
  • 인터넷과 웹 기술이 모바일 장치 중심으로 발전하면서 이미지 데이터는 사람, 텍스트, 공간 등 다양한 유형의 민감정보를 담고 있다. 이러한 특성과 더불어 SNS 사용이 증가하면서 온라인 상의 개인정보가 노출되고 악용되는 피해 규모가 커지고 있다. 그러나 개인정보보호를 위한 다중 유형 객체 탐지 기반의 비식별화 기술에 관한 연구는 미흡한 상황이다. 이에 본 논문은 기존의 단일 유형 객체 탐지 모델을 병렬적으로 이용하여 다중 유형의 객체를 탐지 및 비식별화하는 인공지능 모델을 제안한다. Cutmix 기법을 통해 사람과 텍스트 객체가 함께 존재하는 이미지를 생성하여 학습 데이터로 구성하고, 사람과 텍스트라는 다른 특징을 가진 객체에 대한 탐지 및 비식별화를 수행하였다. 제안하는 모델은 두 가지 객체가 동시에 존재할 때 0.724의 precision과 0.745의 mAP@.5 를 달성한다. 또한, 비식별화 수행 후 전체 객체에 대해 mAP@.5 가 0.224로, 0.4 이상의 감소폭을 보였다.

Idle Slots Skipped Mechanism based Tag Identification Algorithm with Enhanced Collision Detection

  • Su, Jian;Xu, Ruoyu;Yu, ShiMing;Wang, BaoWei;Wang, Jiuru
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2294-2309
    • /
    • 2020
  • In this article, a new Aloha-based tag identification protocol is presented to improve the reading efficiency of the EPC C1 Gen2-based UHF RFID system. Collision detection (CD) plays a vital role in tag identification process which determines the efficiency of anti-collision protocols since most Aloha-based protocols optimize the incoming frame length based on the collisions in current frame. Existing CD methods are ineffective in identifying collision, resulting in a degradation of identification performance. Our proposed algorithm adopts an enhanced CD (ECD) scheme based on the EPC C1 Gen2 standard to optimize identification performance. The ECD method can realize timely and effective CD by detecting the pulse width of the randomly sent by tags. According to the ECD, the reader detects the slot distribution and predicts tag cardinality in every collision slot. The tags involved in each collision slot are identified by independently assigned sub-frames. A large number of numerical results show that the proposed solution is superior to other existing anti-collision protocols in various performance evaluation metrics.

Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses

  • Lei, Ying;Hua, Wei;Luo, Sujuan;He, Mingyu
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.291-304
    • /
    • 2015
  • Compared with the identification of linear structures, it is more challenging to conduct identification of nonlinear structure systems, especially when the locations of structural nonlinearities are not clear in structural systems. Moreover, it is highly desirable to develop methods of parametric identification using partial measurements of structural responses for practical application. To cope with these issues, an identification method is proposed in this paper for the detection and parametric identification of structural nonlinear restoring forces using only partial measurements of structural responses. First, an equivalent linear structural system is proposed for a nonlinear structure and the locations of structural nonlinearities are detected. Then, the parameters of structural nonlinear restoring forces at the locations of identified structural nonlinearities together with the linear part structural parameters are identified by the extended Kalman filter. The proposed method simplifies the identification of nonlinear structures. Numerical examples of the identification of two nonlinear multi-story shear frames and a planar nonlinear truss with different nonlinear models and locations are used to validate the proposed method.

Bagged Auto-Associative Kernel Regression-Based Fault Detection and Identification Approach for Steam Boilers in Thermal Power Plants

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1406-1416
    • /
    • 2017
  • In complex and large-scale industries, properly designed fault detection and identification (FDI) systems considerably improve safety, reliability and availability of target processes. In thermal power plants (TPPs), generating units operate under very dangerous conditions; system failures can cause severe loss of life and property. In this paper, we propose a bagged auto-associative kernel regression (AAKR)-based FDI approach for steam boilers in TPPs. AAKR estimates new query vectors by online local modeling, and is suitable for TPPs operating under various load levels. By combining the bagging method, more stable and reliable estimations can be achieved, since the effects of random fluctuations decrease because of ensemble averaging. To validate performance, the proposed method and comparison methods (i.e., a clustering-based method and principal component analysis) are applied to failure data due to water wall tube leakage gathered from a 250 MW coal-fired TPP. Experimental results show that the proposed method fulfills reasonable false alarm rates and, at the same time, achieves better fault detection performance than the comparison methods. After performing fault detection, contribution analysis is carried out to identify fault variables; this helps operators to confirm the types of faults and efficiently take preventive actions.

시공간 탐지 정확성을 고려한 다변량 누적합 관리도의 비교 (Comparison of Multivariate CUSUM Charts Based on Identification Accuracy for Spatio-temporal Surveillance)

  • 이미림
    • 품질경영학회지
    • /
    • 제43권4호
    • /
    • pp.521-532
    • /
    • 2015
  • Purpose: The purpose of this study is to compare two multivariate cumulative sum (MCUSUM) charts designed for spatio-temporal surveillance in terms of not only temporal detection performance but also spatial detection performance. Method: Experiments under various configurations are designed and performed to test two CUSUM charts, namely SMCUSUM and RMCUSUM. In addition to average run length(ARL), two measures of spatial identification accuracy are reported and compared. Results: The RMCUSUM chart provides higher level of spatial identification accuracy while two charts show comparable performance in terms of ARL. Conclusion: The RMCUSUM chart has more flexibility, robustness, and spatial identification accuracy when compared to those of the SMCUSUM chart. We recommend to use the RMCUSUM chart if control limit calibration is not an urgent task.