• 제목/요약/키워드: Detection algorithms

검색결과 1,853건 처리시간 0.029초

투사영상 불변량을 이용한 장애물 검지 및 자기 위치 인식 (Obstacle Detection and Self-Localization without Camera Calibration using Projective Invariants)

  • 노경식;이왕헌;이준웅;권인소
    • 제어로봇시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.228-236
    • /
    • 1999
  • In this paper, we propose visual-based self-localization and obstacle detection algorithms for indoor mobile robots. The algorithms do not require calibration, and can be worked with only single image by using the projective invariant relationship between natural landmarks. We predefine a risk zone without obstacles for a robot, and update the image of the risk zone, which will be used to detect obstacles inside the zone by comparing the averaging image with the current image of a new risk zone. The positions of the robot and the obstacles are determined by relative positioning. The method does not require the prior information for positioning robot. The robustness and feasibility of our algorithms have been demonstrated through experiments in hallway environments.

  • PDF

군집지능과 모델개선기법을 이용한 구조물의 결함탐지 (Structural Damage Detection Using Swarm Intelligence and Model Updating Technique)

  • 최종헌;고봉환
    • 한국소음진동공학회논문집
    • /
    • 제19권9호
    • /
    • pp.884-891
    • /
    • 2009
  • This study investigates some of swarm intelligence algorithms to tackle a traditional damage detection problem having stiffness degradation or damage in mechanical structures. Particle swarm(PSO) and ant colony optimization(ACO) methods have been exploited for localizing and estimating the location and extent damages in a structure. Both PSO and ACO are population-based, stochastic algorithms that have been developed from the underlying concept of swarm intelligence and search heuristic. A finite element (FE) model updating is implemented to minimize the difference in a set of natural frequencies between measured and baseline vibration data. Stiffness loss of certain elements is considered to simulate structural damages in the FE model. It is numerically shown that PSO and ACO algorithms successfully completed the optimization process of model updating in locating unknown damages in a truss structure.

카메라 기반 야간 차선 인식율 개선을 위한 영상처리 알고리즘에 대한 연구 (A Study on Image Processing Algorithms for Improving Lane Detectability at Night Based on Camera)

  • 김흥룡;이선봉
    • 한국자동차공학회논문집
    • /
    • 제21권1호
    • /
    • pp.51-60
    • /
    • 2013
  • In this paper, to control the existing headlamp control system using steering wheel angle more efficiently and more actively, image processing algorithm which improved the detection rate of lane at night based on camera was suggested. And to recognize road lane more clearly in the conditions of low illumination, new algorithms were developed in the aspects of improving brightness, extracting clear lane edge and using the characteristics of lane. Through this research, it turned out that lane detection ability by using the normalized stretching, angular mask and expected-area scan have good performance in the night compare to existing algorithms.

An Automatic Portscan Detection System with Adaptive Threshold Setting

  • Kim, Sang-Kon;Lee, Seung-Ho;Seo, Seung-Woo
    • Journal of Communications and Networks
    • /
    • 제12권1호
    • /
    • pp.74-85
    • /
    • 2010
  • For the purpose of compromising hosts, attackers including infected hosts initially perform a portscan using IP addresses in order to find vulnerable hosts. Considerable research related to portscan detection has been done and many algorithms have been proposed and implemented in the network intrusion detection system (NIDS). In order to distinguish portscanners from remote hosts, most portscan detection algorithms use a fixed threshold that is manually managed by the network manager. Because the threshold is a constant, even though the network environment or the characteristics of traffic can change, many false positives and false negatives are generated by NIDS. This reduces the efficiency of NIDS and imposes a high processing burden on a network management system (NMS). In this paper, in order to address this problem, we propose an automatic portscan detection system using an fast increase slow decrease (FISD) scheme, that will automatically and adaptively set the threshold based on statistical data for traffic during prior time periods. In particular, we focus on reducing false positives rather than false negatives, while the threshold is adaptively set within a range between minimum and maximum values. We also propose a new portscan detection algorithm, rate of increase in the number of failed connection request (RINF), which is much more suitable for our system and shows better performance than other existing algorithms. In terms of the implementation, we compare our scheme with other two simple threshold estimation methods for an adaptive threshold setting scheme. Also, we compare our detection algorithm with other three existing approaches for portscan detection using a real traffic trace. In summary, we show that FISD results in less false positives than other schemes and RINF can fast and accurately detect portscanners. We also show that the proposed system, including our scheme and algorithm, provides good performance in terms of the rate of false positives.

수동형 FTIR 분광계에서 초동 탐지 기법을 이용한 고속 원거리 화학 가스 탐지 알고리즘 (Fast Remote Detection Algorithms for Chemical Gases Using Pre-Detection with a Passive FTIR Spectrometer)

  • 유형근;박동조;남현우;박병황
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.744-751
    • /
    • 2018
  • In this paper, we propose a fast detection and identification algorithm of chemical gases with a passive FTIR spectrometer. We use a pre-detection algorithm that can reduce the spatial region effectively for gas detection and the candidates of the target. It is possible to remove background spectra effectively from measured spectra with the least-squares method. The CC(Correlation Coefficients) and the SNR(Signal-to-Noise Ratio) methods are used for the detection of target gases. The proposed pre-detection algorithm allows the total process of chemical gas detection to be performed with lower complexity compared with the conventional algorithms. This paper can help developing real-time chemical detection instruments and various applications of FTIR spectrometers.

Extended Support Vector Machines for Object Detection and Localization

  • Feyereisl, Jan;Han, Bo-Hyung
    • 전자공학회지
    • /
    • 제39권2호
    • /
    • pp.45-54
    • /
    • 2012
  • Object detection is a fundamental task for many high-level computer vision applications such as image retrieval, scene understanding, activity recognition, visual surveillance and many others. Although object detection is one of the most popular problems in computer vision and various algorithms have been proposed thus far, it is also notoriously difficult, mainly due to lack of proper models for object representation, that handle large variations of object structure and appearance. In this article, we review a branch of object detection algorithms based on Support Vector Machines (SVMs), a well-known max-margin technique to minimize classification error. We introduce a few variations of SVMs-Structural SVMs and Latent SVMs-and discuss their applications to object detection and localization.

  • PDF

저고도 무인항공기를 이용한 보행자 추적에 관한 연구 (A Study on Pedestrians Tracking using Low Altitude UAV)

  • 서창진
    • 전기학회논문지P
    • /
    • 제67권4호
    • /
    • pp.227-232
    • /
    • 2018
  • In this paper, we propose a faster object detection and tracking method using Deep Learning, UAV(unmanned aerial vehicle), Kalman filter and YOLO(You Only Look Once)v3 algorithms. The performance of the object tracking system is decided by the performance and the accuracy of object detecting and tracking algorithms. So we applied to the YOLOv3 algorithm which is the best detection algorithm now at our proposed detecting system and also used the Kalman Filter algorithm that uses a variable detection area as the tracking system. In the experiment result, we could find the proposed system is an excellent result more than a fixed area detection system.

Supervised learning-based DDoS attacks detection: Tuning hyperparameters

  • Kim, Meejoung
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.560-573
    • /
    • 2019
  • Two supervised learning algorithms, a basic neural network and a long short-term memory recurrent neural network, are applied to traffic including DDoS attacks. The joint effects of preprocessing methods and hyperparameters for machine learning on performance are investigated. Values representing attack characteristics are extracted from datasets and preprocessed by two methods. Binary classification and two optimizers are used. Some hyperparameters are obtained exhaustively for fast and accurate detection, while others are fixed with constants to account for performance and data characteristics. An experiment is performed via TensorFlow on three traffic datasets. Three scenarios are considered to investigate the effects of learning former traffic on sequential traffic analysis and the effects of learning one dataset on application to another dataset, and determine whether the algorithms can be used for recent attack traffic. Experimental results show that the used preprocessing methods, neural network architectures and hyperparameters, and the optimizers are appropriate for DDoS attack detection. The obtained results provide a criterion for the detection accuracy of attacks.

인공지지체 불량 검출을 위한 딥러닝 모델 성능 비교에 관한 연구 (A Comparative Study on Deep Learning Models for Scaffold Defect Detection)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.109-114
    • /
    • 2021
  • When we inspect scaffold defect using sight, inspecting performance is decrease and inspecting time is increase. We need for automatically scaffold defect detection method to increase detection accuracy and reduce detection times. In this paper. We produced scaffold defect classification models using densenet, alexnet, vggnet algorithms based on CNN. We photographed scaffold using multi dimension camera. We learned scaffold defect classification model using photographed scaffold images. We evaluated the scaffold defect classification accuracy of each models. As result of evaluation, the defect classification performance using densenet algorithm was at 99.1%. The defect classification performance using VGGnet algorithm was at 98.3%. The defect classification performance using Alexnet algorithm was at 96.8%. We were able to quantitatively compare defect classification performance of three type algorithms based on CNN.

False Alarm Rate 변화에 따른 DoS/DDoS 탐지 알고리즘의 성능 분석 (Performance Analysis of DoS/DDoS Attack Detection Algorithms using Different False Alarm Rates)

  • 장범수;이주영;정재일
    • 한국시뮬레이션학회논문지
    • /
    • 제19권4호
    • /
    • pp.139-149
    • /
    • 2010
  • 인터넷은 확장성과 최선형 라우팅 서비스를 목적으로 설계되었기 때문에 보안상에 취약점을 가진다. 이에 IP spoofing과 DoS/DDoS 공격을 탐지하기 위한 다양한 공격 탐지 방법들이 제안되었다. DoS/DDoS 공격은 공격이 시작되고 짧은 시간 내에 목적을 이루기 때문에 공격 탐지 알고리즘들은 빠른 시간 내에 정확한 탐지를 하는 것이 중요하다. 공격 탐지 알고리즘들은 미탐지율과 오탐지율로 이루어진 오경고율을 가지며 공격 탐지 알고리즘의 성능을 평가하는 중요한 요소가 된다. 본 논문에서는 공격 탐지 알고리즘의 특징을 살펴보고 그 성능을 분석하였다. 공격 탐지 알고리즘의 성능은 미탐지율과 오탐지율을 변화시켰을 시, 공격 트래픽 및 일반 트래픽에 미치는 영향을 시뮬레이션을 통해 각각 분석하였다. 이를 통해 전송되는 공격 패킷의 수는 미탐지율에 비례하며, 전송되는 일반 패킷의 수는 일정 치 이하의 미탐지율과 오탐지율에 반비례하는 것을 확인하였다. 또 공격 탐지 알고리즘의 미탐지율 변화에 따른 오탐지율의 변화를 분석하여 미탐지율과 오탐지율의 관계를 도출하고 공격탐지 알고리즘의 한계를 분석하였다. 이러한 한계를 극복하기 위해 정확한 네트워크 상태를 판단하여 공격 탐지 알고리즘의 한계를 줄이고 성능을 개선하는 방안을 제안하였고 그 결과, 공격 탐지 알고리즘의 성능이 보다 향상됨을 확인하였다.