• Title/Summary/Keyword: Detection ability

Search Result 827, Processing Time 0.035 seconds

Multipath detection in carrier phase differential GPS

  • Seo, Jae-Won;Lee, Hyung-Keun;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1239-1243
    • /
    • 2005
  • A multipath mitigation method using the fault detection and isolation technique is proposed for the CDGPS. The base station is assumed to be immune to the effect of the multipath. With this reasonable assumption, the effect of multipath in moving station is mitigated. For that, the double difference measurement is produced, and then another additional difference between code pseudorange and acclumulated carrier phase is calculated. The test statistic is constituted with those differences. The hypothesis testing is applied to that test statistic. The proposed test statistic makes use of the effect of multipath in code pseudoranges and it does not use time differences. Therefore the detection ability for multipath is improved in most environments. However, the increased number of differences makes the measurement noises larger. The performance of the method is compared with that of the conventional parity space method with code pseudorange.

  • PDF

Fault Detection of the Cylindrical Plunge Grinding Process by Using the Parameters of AE Signals

  • Kwak, Jae-Seob;Song, Ji-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.773-781
    • /
    • 2000
  • The focus of this study is the development of a credible fault detection system of the cylindrical plunge grinding process. The acoustic emission (AE) signals generated during machining were analyzed to determine the relationship between grinding-related faults and characteristics of changes in signals. Furthermore, a neural network, which has excellent ability in pattern classification, was applied to the diagnosis system. The neural network was optimized with a momentum coefficient, a learning rate, and a structure of the hidden layer in the iterative learning process. The success rates of fault detection were verified.

  • PDF

A New Semantic Kernel Function for Online Anomaly Detection of Software

  • Parsa, Saeed;Naree, Somaye Arabi
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.288-291
    • /
    • 2012
  • In this letter, a new online anomaly detection approach for software systems is proposed. The novelty of the proposed approach is to apply a new semantic kernel function for a support vector machine (SVM) classifier to detect fault-suspicious execution paths at runtime in a reasonable amount of time. The kernel uses a new sequence matching algorithm to measure similarities among program execution paths in a customized feature space whose dimensions represent the largest common subpaths among the execution paths. To increase the precision of the SVM classifier, each common subpath is given weights according to its ability to discern executions as correct or anomalous. Experiment results show that compared with the known kernels, the proposed SVM kernel will improve the time overhead of online anomaly detection by up to 170%, while improving the precision of anomaly alerts by up to 140%.

Position Detection of a Capsule-type Endoscope by Magnetic Field Sensors (자계 센서를 이용한 캡슐형 내시경의 위치 측정)

  • Park, Joon-Byung;Kang, Heon;Hong, Yeh-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.66-71
    • /
    • 2007
  • Development of a locomotive mechanism for the capsule type endoscopes will largely enhance their ability to diagnose disease of digestive organs. As a part of it, there should be provided a detection device of their position in human organs for the purpose of observation and motion control. In this paper, a permanent magnet outside human body was employed to project magnetic field on a capsule type endoscope, while its position dependent flux density was measured by three hall-effect sensors which were orthogonally installed inside the capsule. In order to detect the 2-D position data of the capsule with three hall-effect sensors including the roll, pitch and yaw angle, the permanent magnet was extra translated during the measurement. In this way, the 2-D coordinates and three rotation angles of a capsule endoscope on the same motion plane with the permanent magnet could be detected. The working principle and performance test results of the capsule position detection device were introduced in this paper showing that they could be also applied to 6-DOF position detection.

Performance Evaluation and Design of Intrusion Detection System Based on Immune System Model (면역 시스템 모델을 기반으로 한 침입 탐지 시스템 설계 및 성능 평가)

  • 이종성
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.105-121
    • /
    • 1999
  • Computer security is considered important due to the side effect generated from the expansion of computer network and rapid increase of the use of computers. Intrusion Detection System(IDS) has been an active research area to reduce the risk from intruders. We propose a new IDS model, which consists of several computers with IDS, based on the immune system model and describe the design of the IDS model and the prototype implementation of it for feasibility testing and evaluate the performance of the IDS in the aspect of detection time, detection accuracy, diversity which is feature of immune system, and system overhead. The IDSs are distributed and if any of distributed IDSs detect anomaly system call among system call sequences generated by a privilege process, the anomaly system call can be dynamically shared with other IDSs. This makes the IDSs improve the ability of immunity for new intruders.

  • PDF

Distributed Denial of Service Defense on Cloud Computing Based on Network Intrusion Detection System: Survey

  • Samkari, Esraa;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.67-74
    • /
    • 2022
  • One type of network security breach is the availability breach, which deprives legitimate users of their right to access services. The Denial of Service (DoS) attack is one way to have this breach, whereas using the Intrusion Detection System (IDS) is the trending way to detect a DoS attack. However, building IDS has two challenges: reducing the false alert and picking up the right dataset to train the IDS model. The survey concluded, in the end, that using a real dataset such as MAWILab or some tools like ID2T that give the researcher the ability to create a custom dataset may enhance the IDS model to handle the network threats, including DoS attacks. In addition to minimizing the rate of the false alert.

Transfer learning for crack detection in concrete structures: Evaluation of four models

  • Ali Bagheri;Mohammadreza Mosalmanyazdi;Hasanali Mosalmanyazdi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.163-175
    • /
    • 2024
  • The objective of this research is to improve public safety in civil engineering by recognizing fractures in concrete structures quickly and correctly. The study offers a new crack detection method based on advanced image processing and machine learning techniques, specifically transfer learning with convolutional neural networks (CNNs). Four pre-trained models (VGG16, AlexNet, ResNet18, and DenseNet161) were fine-tuned to detect fractures in concrete surfaces. These models constantly produced accuracy rates greater than 80%, showing their ability to automate fracture identification and potentially reduce structural failure costs. Furthermore, the study expands its scope beyond crack detection to identify concrete health, using a dataset with a wide range of surface defects and anomalies including cracks. Notably, using VGG16, which was chosen as the most effective network architecture from the first phase, the study achieves excellent accuracy in classifying concrete health, demonstrating the model's satisfactorily performance even in more complex scenarios.

A Study on Intrusion Detection Using Deep Learning-based Weight Measurement with Multimode Fiber Speckle Patterns

  • Hyuek Jae Lee
    • Current Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.508-514
    • /
    • 2024
  • This paper presents a deep learning-based weight sensor, using optical speckle patterns of multimode fiber, designed for real-time intrusion detection. The weight sensor has been trained to identify 11 distinct speckle patterns, ranging in weight from 0.0 kg to 2.0 kg, with an interval of 200 g between each pattern. The estimation for untrained weights is based on the generalization capability of deep learning. This results in an average weight error of 243.8 g. Although this margin of error precludes accurate weight measurement, the system's ability to detect abrupt weight changes makes it a suitable choice for intrusion detection applications. The weight sensor is integrated with the Google Teachable Machine, and real-time intrusion notifications are facilitated by the ThingSpeakTM cloud platform, an open-source Internet of Things (IoT) application developed by MathWorks.

A Morphology Technique-Based Boundary Detection in a Two-Dimensional QR Code (2차원 QR코드에서 모폴로지 기반의 경계선 검출 방법)

  • Park, Kwang Wook;Lee, Jong Yun
    • Journal of Digital Convergence
    • /
    • v.13 no.2
    • /
    • pp.159-175
    • /
    • 2015
  • The two-dimensional QR code has advantages such as directional nature, enough data storage capacity, ability of error correction, and ability of data restoration. There are two major issues like speed and correctiveness of recognition in the two-dimensional QR code. Therefore, this paper proposes a morphology-based algorithm of detecting the interest region of a barcode. Our research contents can be summarized as follows. First, the interest region of a barcode image was detected by close operations in morphology. Second, after that, the boundary of the barcode are detected by intersecting four cross line outside in a code. Three, the projected image is then rectified into a two-dimensional barcode in a square shape by the reverse-perspective transform. In result, it shows that our detection and recognition rates for the barcode image is also 97.20% and 94.80%, respectively and that outperforms than previous methods in various illumination and distorted image environments.

A hybrid self-adaptive Firefly-Nelder-Mead algorithm for structural damage detection

  • Pan, Chu-Dong;Yu, Ling;Chen, Ze-Peng;Luo, Wen-Feng;Liu, Huan-Lin
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.957-980
    • /
    • 2016
  • Structural damage detection (SDD) is a challenging task in the field of structural health monitoring (SHM). As an exploring attempt to the SDD problem, a hybrid self-adaptive Firefly-Nelder-Mead (SA-FNM) algorithm is proposed for the SDD problem in this study. First of all, the basic principle of firefly algorithm (FA) is introduced. The Nelder-Mead (NM) algorithm is incorporated into FA for improving the local searching ability. A new strategy for exchanging the information in the firefly group is introduced into the SA-FNM for reducing the computation cost. A random walk strategy for the best firefly and a self-adaptive control strategy of three key parameters, such as light absorption, randomization parameter and critical distance, are proposed for preferably balancing the exploitation and exploration ability of the SA-FNM. The computing performance of the SA-FNM is evaluated and compared with the basic FA by three benchmark functions. Secondly, the SDD problem is mathematically converted into a constrained optimization problem, which is then hopefully solved by the SA-FNM algorithm. A multi-step method is proposed for finding the minimum fitness with a big probability. In order to assess the accuracy and the feasibility of the proposed method, a two-storey rigid frame structure without considering the finite element model (FEM) error and a steel beam with considering the model error are taken examples for numerical simulations. Finally, a series of experimental studies on damage detection of a steel beam with four damage patterns are performed in laboratory. The illustrated results show that the proposed method can accurately identify the structural damage. Some valuable conclusions are made and related issues are discussed as well.