• Title/Summary/Keyword: Detection Effectiveness Analysis

Search Result 325, Processing Time 0.026 seconds

Analysis of Detecting Effectiveness of a Homing Torpedo using Combined Discrete Event & Discrete Time Simulation Model Architecture (이산 사건/이산 시간 혼합형 시뮬레이션 모델 구조를 사용한 유도 어뢰의 탐지 효과도 분석)

  • Ha, Sol;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2010
  • Since a homing torpedo system consists of various subsystems, organic interactions of which dictate the performance of the torpedo system, it is necessary to estimate the effects of individual subsystems in order to obtain an optimized design of the overall system. This paper attempts to gain some insight into the detection mechanism of a torpedo run, and analyze the relative importance of various parameters of a torpedo system. A database for the analysis was generated using a simulation model based on the combined discrete event and discrete time architecture. Multiple search schemes, including the snake-search method, were applied to the torpedo model, and some parameters of the torpedo were found to be stochastic. We then analyzed the effectiveness of torpedo’s detection capability according to the torpedo speed, the target speed, and the maximum detection range.

An adaptive method of multi-scale edge detection for underwater image

  • Bo, Liu
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.217-231
    • /
    • 2016
  • This paper presents a new approach for underwater image analysis using the bi-dimensional empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely recognized as a difficult and challenging machine vision problem. The phase information is the very stability feature of image. Recent developments in analysis methods on the phase congruency information have received large attention by the image researchers. In this paper, the proposed method is called the EP model that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using the EP model. The EP images are computed using combinations of the Canny detector parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.

Current and Force Sensor Fault Detection Algorithm for Clamping Force Control of Electro-Mechanical Brake (Electro-Mechanical Brake의 클램핑력 제어를 위한 전류 및 힘 센서 고장 검출 알고리즘 개발)

  • Han, Kwang-Jin;Yang, I-Jin;Huh, Kun-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1145-1153
    • /
    • 2011
  • EMB (Electro-Mechanical Brake) systems can provide improved braking and stability functions such as ABS, EBD, TCS, ESC, BA, ACC, etc. For the implementation of the EMB systems, reliable and robust fault detection algorithm is required. In this study, a model-based fault detection algorithm is designed based on the analytical redundancy method in order to monitor current and force sensor faults in EMB systems. A state-space model for the EMB is derived including faulty signals. The fault diagnosis algorithm is constructed using the analytical redundancy method. Observer is designed for the EMB and the fault detectability condition is examined based on the residual analysis. The performance of the proposed model-based fault detection algorithm is verified in simulations. The effectiveness of the proposed algorithm is demonstrated in various faulty cases.

Blur Detection through Multinomial Logistic Regression based Adaptive Threshold

  • Mahmood, Muhammad Tariq;Siddiqui, Shahbaz Ahmed;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.110-115
    • /
    • 2019
  • Blur detection and segmentation play vital role in many computer vision applications. Among various methods, local binary pattern based methods provide reasonable blur detection results. However, in conventional local binary pattern based methods, the blur map is computed by using a fixed threshold irrespective of the type and level of blur. It may not be suitable for images with variations in imaging conditions and blur. In this paper we propose an effective method based on local binary pattern with adaptive threshold for blur detection. The adaptive threshold is computed based on the model learned through the multinomial logistic regression. The performance of the proposed method is evaluated using different datasets. The comparative analysis not only demonstrates the effectiveness of the proposed method but also exhibits it superiority over the existing methods.

A Study on Improvement of Effectiveness Using Anomaly Analysis rule modification in Electronic Finance Trading (전자금융거래의 이상징후 탐지 규칙 개선을 통한 효과성 향상에 관한 연구)

  • Choi, Eui-soon;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.3
    • /
    • pp.615-625
    • /
    • 2015
  • This paper proposes new methods and examples for improving fraud detection rules based on banking customer's transaction behaviors focused on anomaly detection method. This study investigates real example that FDS(Fraud Detection System) regards fraudulent transaction as legitimate transaction and figures out fraudulent types and transaction patterns. To understanding the cases that FDS regard legitimate transaction as fraudulent transaction, it investigates all transactions that requied additional authentications or outbound call. We infered additional facts to refine detection rules in progress of outbound calling and applied to existing detection rules to improve. The main results of this study is the following: (a) Type I error is decreased (b) Type II errors are also decreased. The major contribution of this paper is the improvement of effectiveness in detecting fraudulent transaction using transaction behaviors and providing a continuous method that elevate fraud detection rules.

A Comparative Study on the Performance of Intrusion Detection using Decision Tree and Artificial Neural Network Models (의사결정트리와 인공 신경망 기법을 이용한 침입탐지 효율성 비교 연구)

  • Jo, Seongrae;Sung, Haengnam;Ahn, Byunghyuk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.33-45
    • /
    • 2015
  • Currently, Internet is used an essential tool in the business area. Despite this importance, there is a risk of network attacks attempting collection of fraudulence, private information, and cyber terrorism. Firewalls and IDS(Intrusion Detection System) are tools against those attacks. IDS is used to determine whether a network data is a network attack. IDS analyzes the network data using various techniques including expert system, data mining, and state transition analysis. This paper tries to compare the performance of two data mining models in detecting network attacks. They are decision tree (C4.5), and neural network (FANN model). I trained and tested these models with data and measured the effectiveness in terms of detection accuracy, detection rate, and false alarm rate. This paper tries to find out which model is effective in intrusion detection. In the analysis, I used KDD Cup 99 data which is a benchmark data in intrusion detection research. I used an open source Weka software for C4.5 model, and C++ code available for FANN model.

A Study on Detection of Abnormal Patterns Based on AI·IoT to Support Environmental Management of Architectural Spaces (건축공간 환경관리 지원을 위한 AI·IoT 기반 이상패턴 검출에 관한 연구)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.

The Effectiveness Evaluation Methods of DDoS Attacks Countermeasures Techniques using Simulation (시뮬레이션을 이용한 DDoS공격 대응기술 효과성평가방법)

  • Kim, Ae-Chan;Lee, Dong-Hoon;Jang, Seong-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.17-24
    • /
    • 2012
  • This paper suggests Effectiveness Evaluation Methods of DDoS attacks countermeasures model by simulation. According to the security objectives that are suggested by NIST(National Institute of Standards and Technology), It represents a hierarchical Effectiveness Evaluation Model. we calculated the weights of factors that security objectives, security controls, performance indicator through AHP(Analytic Hierarchy Process) analysis. Subsequently, we implemented Arena Simulation Model for the calculation of function points at the performance indicator. The detection and protection algorithm involve methods of critical-level setting, signature and anomaly(statistic) based detection techniques for Network Layer 4, 7 attacks. Proposed Effectiveness Evaluation Model can be diversely used to evaluate effectiveness of countermeasures and techniques for new security threats each organization.

Automatic TFT-LCD Mura Inspection Based on Studentized Residuals in Regression Analysis

  • Chuang, Yu-Chiang;Fan, Shu-Kai S.
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.148-154
    • /
    • 2009
  • In recent days, large-sized flat-panel display (FPD) has been increasingly applied to computer monitors and TVs. Mura defects, appearing as low contrast or non-uniform brightness region, sometimes occur in manufacturing of the Thin-Film Transistor Liquid-Crystal Displays (TFT-LCD). Implementation of automatic Mura inspection methods is necessary for TFT-LCD production. Various existing Mura detection methods based on regression diagnostics, surface fitting and data transformation have been presented with good performance. This paper proposes an efficient Mura detection method that is based on a regression diagnostics using studentized residuals for automatic Mura inspection of FPD. The input image is estimated by a linear model and then the studentized residuals are calculated for filtering Mura regions. After image dilation, the proposed threshold is determined for detecting the non-uniform brightness region in TFT-LCD by means of monitoring the every pixel in the image. The experimental results obtained from several test images are used to illustrate the effectiveness and efficiency of the proposed method for Mura detection.

A Validation of Effectiveness for Intrusion Detection Events Using TF-IDF (TF-IDF를 이용한 침입탐지이벤트 유효성 검증 기법)

  • Kim, Hyoseok;Kim, Yong-Min
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1489-1497
    • /
    • 2018
  • Web application services have diversified. At the same time, research on intrusion detection is continuing due to the surge of cyber threats. Also, As a single-defense system evolves into multi-level security, we are responding to specific intrusions by correlating security events that have become vast. However, it is difficult to check the OS, service, web application type and version of the target system in real time, and intrusion detection events occurring in network-based security devices can not confirm vulnerability of the target system and success of the attack A blind spot can occur for threats that are not analyzed for problems and associativity. In this paper, we propose the validation of effectiveness for intrusion detection events using TF-IDF. The proposed scheme extracts the response traffics by mapping the response of the target system corresponding to the attack. Then, Response traffics are divided into lines and weights each line with an TF-IDF weight. we checked the valid intrusion detection events by sequentially examining the lines with high weights.