• 제목/요약/키워드: Detailed Chemical Reaction Mechanism

검색결과 45건 처리시간 0.019초

Dynamics of OH Production in the Reaction of O(1D2) with Cyclopropane

  • Jang, Sungwoo;Jin, Sung Il;Kim, Hong Lae;Kim, Hyung Min;Park, Chan Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1706-1712
    • /
    • 2014
  • The OH($X^2{\Pi}$, ${\upsilon}^{\prime\prime}=0,1$) internal state distribution following the reaction of electronically excited oxygen atom ($O(^1D_2)$) with cyclo-$C_3H_6$ has been measured using laser-induced fluorescence, and compared with that following the reaction of $O(^1D_2)$ with $C_3H_8$. The overall characteristics of the OH internal energy distributions for both reactions were qualitatively similar. The population propensity of the ${\Pi}(A^{\prime})$ ${\Lambda}$-doublet sub-level suggested that both reactions proceeded via an insertion/elimination mechanism. Bimodal rotational population distributions supported the existence of two parallel mechanisms for OH production, i.e., statistical insertion and nonstatistical insertion. However, detailed analysis revealed that, despite the higher exoergicity of the reaction, the rotational distribution of the OH following the reaction of $O(^1D_2)$ with $C_3H_8$ was significantly cooler than that with cyclo-$C_3H_6$, especially in the vibrational ground state. This observation was interpreted as the effect of the flexibility of the insertion complex and faster intramolecular vibrational relaxation (IVR).

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

수소/공기/HFP 혼합기의 화학반응 및 점화지연 특성 (Characteristics of Chemical Reaction and Ignition Delay of $H_2$/Air/HFP Mixtures)

  • 이의주;오창보
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.17-21
    • /
    • 2010
  • The chemistry and ignition delay of hydrogen/air/HFP premixed mixtures was investigated numerically with unsteady perfectly stirred reactor(PSR). The detailed chemistry of 93 species and 817 reaction mechanism was introduced for hydrogen/air/HFP mixtures. The results shows the temporal concentration variations of major or reactants such as hydrogen and oxygen during autoignition were similar to the spatial distribution of premixed flame while water vapor produced at the ignition temperature was decomposed later, which can be clarified with the relate species production rates that the the re-growth (or shoulder) of OH concentration is a result of F radicals attacking $H_20$ forming OH and HF. For the stoichiometric $H_2$/air mixture inhibited by 20% HFP, HFP thermal decomposition reaction prevails over the radical attack such as H at initial stage. Even though relatively large HFP addition contributes to delay the ignition, chemical effect on the ignition delay is not effective because of late thermal decomposition of HFP. The most small ignition delay was observed at a slightly fuel lean condition ($\phi$ = 0.9), and temperature dependency of ignition delay was clearly shown near 900 K.

H2-공기와 CO-공기 예혼합화염 사이의 후류상호작용에 있어서 CO2 첨가 효과 (Effects of CO2 Addition in Downstream Interaction between 2-Air and CO-Air Premixed Flames)

  • 길상인;박정
    • 한국연소학회지
    • /
    • 제18권4호
    • /
    • pp.29-36
    • /
    • 2013
  • Numerical study was conducted to clarify effects of added $CO_2$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced. The most discernible difference between the two with and without having $CO_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the (H, O, OH)-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with relatively short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $CO_2$ suppressed flame stabilization. Particularly this phenomenon was appreciable at flame conditions which lean and rich extinction boundary was merged. The detailed discussion of chemical effects of added $CO_2$ was addressed to the present downstream interaction.

쐐기 및 원추 주위의 불안정한 충격파 유도연소 해석 (Analysis of Unstable Shock-Induced Combustion over Wedges and Conical Bodies)

  • Jeong-Yeol Choi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.32-33
    • /
    • 2003
  • Mechanism of a periodic oscillation of shock-induced combustion over a two- dimensional wedges and axi-symmetric cones were investigated through a series of numerical simulations at off-attaching condition of oblique detonation waves(ODW). A same computational domain over 40 degree half-angle was considered for two-dimensional and axi-symmetric shock-induced combustion phenomena. For two-dimensional shock-induced combustion, a 2H2+02+17N2 mixture was considered at Mach number was 5.85with initial temperature 292 K and initial pressureof 12 KPa. The Rankine-Hugoniot relation has solution of attached waves at this condition. For axi-symmetric shock-induced combustion, a H2+2O2+2Ar mixture was considered at Mach number was 5.0 with initial temperature 288 K and initial pressure of 200 mmHg. The flow conditions were based on the conditions of similar experiments and numerical studies.[1, 3]Numerical simulation was carried out with a compressible fluid dynamics code with a detailed hydrogen-oxygen combustion mechanism.[4, 5] A series of calculations were carried out by changing the fluid dynamic time scale. The length wedge is varied as a simplest way of changing the fluid dynamic time scale. Result reveals that there is a chemical kinetic limit of the detached overdriven detonation wave, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. At the off-attaching condition of ODW the shock and reaction waves still attach at a wedge as a periodically oscillating oblique shock-induced combustion, if the Rankine-Hugoniot limit of detachment isbut the chemical kinetic limit is not.Mechanism of the periodic oscillation is considered as interactions between shock and reaction waves coupled with chemical kinetic effects. There were various regimes of the periodicmotion depending on the fluid dynamic time scales. The difference between the two-dimensional and axi-symmetric simulations were distinct because the flow path is parallel and uniform behind the oblique shock waves, but is not behind the conical shock waves. The shock-induced combustion behind the conical shockwaves showed much more violent and irregular characteristics.From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

3차원 데토네이션 파의 수평 및 대각선 모드 파면 구조 (Transverse and Diagonal Mode Structures of Three-dimensional Detonation Wave)

  • 조덕래;최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.343-346
    • /
    • 2005
  • 전산 해석과 병렬처리를 이용하여 정사각 관 내부를 전파하는 데토네이션파의 삼차원 구조를 살펴보았다. 가변 비열비 공식과 간략화 된 일단계 Arrhenius 반응 모델과 연계된 비점성 유체 방정식을 MUSCL 기반 TVD 해법과 4단계 Runge-Kutta 적분 방법을 이용하여 해석하였다. 삼차원에서의 비정상 해석 결과로부터 그을음 막 기록(smoked-foil record)에서 같은 길이와 다른 폭을 가지는 수평 및 대각 방향 불안정에 의한 상세한 파면 구조를 파악할 수 있었다.

  • PDF

비정상 화염편 모델을 이용한 대기압 층류 비예혼합 CH4/Air 화염장의 매연입자 생성 특성 및 화염구조 해석 (Unsteady Flamelet Modeling for Flame Structure and Soot Formation of Lanimar Non-premixed CH4/Air Flame)

  • 김태훈;전상태;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.137-138
    • /
    • 2012
  • The two-equation soot model based on the transient laminar flamelet model is implemented for soot formation of laminar non-premixed $CH_4/Air$ flame with detailed chemical reaction mechanism and complex thermodynamic properties. The soot model represents nucleation, growth and oxidation with gas-phase chemistry. This represented unsteady flamelet soot model has been tested and compared using well verified reference calculation result obtained solving the Full Transport Equations method.

  • PDF

난류 비예혼합 및 부분예혼합 화염장에서 매연입자의 생성특성 해석 (Numerical Studies on Soot Formation Characteristics of Turbulent Non-premixed and Partially Premixed Flames)

  • 김태훈;이정원;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.141-143
    • /
    • 2012
  • The present study is aiming at numerically analyze the soot formation processes coupled with gas reaction mechanism in turbulent non-premixed and partially premixed flames. In order to realistically represent turbulence-chemistry interactions with detailed chemical kinetics and soot formation behaviour related to the turbulent non-premixed and partially premixed flames, the transient flamelet[1] and flamelet based level-set approach[2] are coupled with soot formation based on the two equation model [3] and DQMOM (Direct Quadrature Method of Moment)[4].

  • PDF

수소 예혼합기의 정상 및 이상연소에 관한 수치해석 (A Numerical Study on Normal and Abnormal Combustion in Hydrogen Premixture)

  • 손채훈;정석호
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1989-1998
    • /
    • 1995
  • Characteristics of the flame propagation for normal and abnormal combustion in hydrogen premixture in a cylindrical constant-volume combustion chamber are studied numerically. A detailed hydrogen oxidation kinetic mechanism, mixture transport properties and a model describing spark ignition process are used. The calculated pressure-time history of the stable deflagration wave propagation agrees well with the experiment. The ignition of the premixture in the unburned gas, initiated by the hot spot, causes a transition from deflagration to detonation under some initial temperature and pressure. Under the initial conditions with high temperature and pressure, excessive ignition energy initiates a strong blast wave and a detonation wave that follows. The chemical reaction in the detonation wave is much more vigorous than that in the deflagration wave and the peak pressure in the detonation wave is much higher than the equilibrium value.

탄화수소/산소 혼합기체가 채워진 관 내부를 전파하는 데토네이션 파의 해석과 가시화

  • 최정열
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 춘계학술대회 논문집
    • /
    • pp.29-36
    • /
    • 2004
  • A numerical study is carried out on the detonation wave propagation through a T-shaped flame tube, which represents a crucial part of the combustion wave ignition (CWI) system aimed for simultaneous ignition of multiple combustion chambers by delivering detonation waves. The formulation includes the Euler equations and an induction-parameter model. The reaction rate is treated based on a chemical kinetics database obtained from a detailed chemistry mechanism. A second-order implicit time integration and a third-order TVD algorithm are Implemented to solve the theoretical model numerically. A total of more than two-million grid points are used to provide direct insight into the dynamics of the detonation wave. Several important phenomena including detonation wave propagation, degeneration, and re-initiation are carefully examined. Information obtained can be effectively used to facilitate the design and optimization of the flame tubes of CWI systems.

  • PDF