Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.6.1706

Dynamics of OH Production in the Reaction of O(1D2) with Cyclopropane  

Jang, Sungwoo (Department of Chemistry, Kookmin University)
Jin, Sung Il (Department of Chemistry, Kookmin University)
Kim, Hong Lae (Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University)
Kim, Hyung Min (Department of Chemistry, Kookmin University)
Park, Chan Ryang (Department of Chemistry, Kookmin University)
Publication Information
Abstract
The OH($X^2{\Pi}$, ${\upsilon}^{\prime\prime}=0,1$) internal state distribution following the reaction of electronically excited oxygen atom ($O(^1D_2)$) with cyclo-$C_3H_6$ has been measured using laser-induced fluorescence, and compared with that following the reaction of $O(^1D_2)$ with $C_3H_8$. The overall characteristics of the OH internal energy distributions for both reactions were qualitatively similar. The population propensity of the ${\Pi}(A^{\prime})$ ${\Lambda}$-doublet sub-level suggested that both reactions proceeded via an insertion/elimination mechanism. Bimodal rotational population distributions supported the existence of two parallel mechanisms for OH production, i.e., statistical insertion and nonstatistical insertion. However, detailed analysis revealed that, despite the higher exoergicity of the reaction, the rotational distribution of the OH following the reaction of $O(^1D_2)$ with $C_3H_8$ was significantly cooler than that with cyclo-$C_3H_6$, especially in the vibrational ground state. This observation was interpreted as the effect of the flexibility of the insertion complex and faster intramolecular vibrational relaxation (IVR).
Keywords
$O(^1D_2)$; Cyclopropane; OH; Internal energy distribution; IVR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bethardy, G. A.; Wang, X.; Perry, D. S. Can. J. Chem. 1994, 72, 652.   DOI
2 Nesbitt, D. J.; W. Field, Robert J. Phys. Chem. 1996, 100, 12735.   DOI
3 (a) Parmenter, C. S.; Stone, B. M. J. Chem. Phys. 1986, 84, 4710.   DOI
4 (a) Luntz, A. C.; Schinke, R.; Lester, W. A., Jr.; Gunthard, H. H. J. Chem. Phys. 1979, 70, 5908.   DOI
5 (b) Smith, G. K.; Butler, N. E. J. Chem. Phys. 1980, 73, 2243.   DOI
6 (c) Butler, J. E.; MacDonald, R. G.; Donaldson, D. J.; Sloan, J. J. Chem. Phys. Lett. 1983, 95, 183.   DOI
7 (d) Aker, P. M.; Sloan, J. J. J. Chem. Phys. 1986, 85, 1412.   DOI
8 (e) Aker, P. M.; Obrien, J.; Parsons, J. M.; Sloan, J. J. Can. J. Chem. 1986, 64, 2315.   DOI
9 (f) Goldfield, E. M.; Wiesenfeld, J. R. J. Chem. Phys. 1990, 93, 1030.   DOI
10 (g) Comes, F. J.; Gericke, K. H.; Manz, J. J. Chem. Phys. 1981, 75, 2853.   DOI
11 (h) Park, C. R.; Wiesenfeld, J. R. Chem. Phys. Lett. 1989, 163, 230.   DOI   ScienceOn
12 CRC Handbook of Bimolecular and Termolecular Gas Reactions; Kerr, J. A., Ed.; Chemical Rubber: Cleveland, 1981.
13 Luntz, A. C. J. Chem. Phys. 1980, 73, 1143.   DOI
14 Aker, P. M.; Obrien, J. J. A.; Sloan, J. J. J. Chem. Phys. 1986, 84, 745.   DOI
15 Casavecchia, P.; Buss, R. J.; Sibener, S. J.; Lee, Y. T. J. Chem. Phys. 1980, 73, 6351.   DOI
16 Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994, 98, 2744.   DOI   ScienceOn
17 Park, C. R.; Wiesenfeld, J. R. J. Chem. Phys. 1991, 95, 8166.   DOI
18 (c) Zhao, Z.-Q.; Parmenter, C. S.; Moss, D. B.; Bradley, A. J.; Knight, A. E. W.; Owens, K. G. J. Chem. Phys. 1992, 96, 6362.   DOI
19 (e) Moss, D. B.; Parmenter, C. S. J. Chem. Phys. 1993, 98, 6897.   DOI
20 (b) Moss, D. B.; Parmenter, C. S.; Ewing, G. E. J. Chem. Phys. 1987, 86, 51.   DOI
21 (d) Covelskie, R. A.; Dolson, D. A.; Parmenter, C. S. J. Phys. Chem. 1985, 89, 645.   DOI
22 (f) Timbers, P. J.; Parmenter, C. S.; Moss, D. B. J. Chem. Phys. 1994, 100, 1028.   DOI
23 (a) van Zee, R. D.; Stephenson, J. C.; Casassa, M. P. Chem. Phys. Lett. 1994, 223, 167.   DOI
24 Martens, C. C.; Reinhardt, W. P. J. Chem. Phys. 1990, 93, 5621.   DOI
25 McIlroy, A.; Nesbitt, D. J. J. Chem. Phys. 1994, 101, 3421.   DOI
26 Shu, J.; Lin, J. J.; Wang, C. C.; Lee, Y. T.; Yang, X.; Nguyen, T. L.; Mebel, A. M. J. Chem. Phys. 2001, 115, 7.   DOI
27 (b) van Zee, R. D.; Stephenson, J. C. J. Chem. Phys. 1995, 102, 6946.   DOI
28 (c) Miller, C. C.; van Zee, R. D.; Stephenson, J. C. J. Chem. Phys. 2001, 114, 1214.   DOI
29 Wang, C. C.; Shu, J.; Lin, J. J.; Lee, Y. T.; Yang, X.; Nguyen, T. L.; Mebel, A. M. J. Chem. Phys. 2002, 116, 8292.   DOI
30 Doncaster, A. M.; Walsh, R. J. Chem. Soc., Faraday Trans I 1979, 75, 1126.   DOI
31 Doncaster, A. M.; Walsh, R. Int. J. Chem. Kinet. 1981, 13, 503.   DOI
32 Herron, J. T.; Huie, R. E. J. Phys. Chem. 1974, 2, 467.
33 Moor, E. A.; Richards, W. G. Phys. Scr. 1971, 3, 223.   DOI   ScienceOn
34 Luque, J.; Crosley, D. R. LIFBASE: Database and Spectral Simulation Program (Version 1.5); SRI International Report MP 99-009, 1999.
35 Butler, J. E.; Jursich, G. M.; Watson, I. A.; Wiesenfeld, J. R. J. Chem. Phys. 1986, 84, 5363.
36 Andresen, P.; Rothe, E. W. J. Chem. Phys. 1985, 82, 3634.   DOI
37 Andresen, P.; Luntz, A. C. J. Chem. Phys. 1980, 72, 5842.   DOI
38 Tan, X.-Q.; Majewski, W. A.; Plusquellic, D. F.; Pratt, D. W. J. Chem. Phys. 1991, 94, 7721.   DOI